云解析小编科普:“SRTT” DNS服务器选择算法介绍

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 大家都知道BIND在作为递归服务器时在向权威DNS请求时会使用优选策略,不过这个优选策略目前没有清晰的资料。小编查阅了一些公开的资料发现基本都是各种传抄,没有什么清晰的说明。因此小编专门编写此文来科普递归是如何进行优选的。

_

大家都知道BIND在作为递归服务器时在向权威DNS请求时会使用优选策略,不过这个优选策略目前没有清晰的资料。小编查阅了一些公开的资料发现基本都是各种传抄,没有什么清晰的说明。因此小编专门编写此文来科普递归是如何进行优选的。本文以BIND9.8/BIND9.9/BIND9.11的代码为基础,并假定域名有多个质量不同的NS来进行计算。

BIND9.8及之前版本的SRTT策略

目前可以查询到的一部分公开的资料都是基于BIND9.8版本的,小编仔细查阅了BIND9.8的源代码后,判定这些公开资料的描述基本符合事实情况。小编针对BIND9.8的SRTT计算过程描述如下:

1、首先BIND在第一次计算SRTT时为所有的NS记录一个初始化的值,赋值方法是:

isc_random_get(&r);
e->srtt = (r & 0x1f) + 1;
e->expires = 0;

注释:这个值为随机1-32us,由于这个值非常小远小于正常的SRTT,因此可以认为在初始化的时候,所有的NS都会得到一个很小的近乎为零的SRTT,因此所有的NS都有机会去被第一次优选。

2、在所有的NS中选择SRTT最小的一个NS服务器发起解析请求,如得到应答则记录这次请求的RTT,并重新计算这个NS的SRTT,计算方法是:

new_srtt = (addr->entry->srtt / 10 * factor)+ (rtt / 10 * (10 - factor));

注释:这里的factor定义如下:

#define DNS_ADB_RTTADJDEFAULT           7       /*%< default scale */
#define DNS_ADB_RTTADJREPLACE           0       /*%< replace with our rtt */
#define DNS_ADB_RTTADJAGE               10      /*%< age this rtt */

因此,在正常收到应答的情况:

        factor = DNS_ADB_RTTADJDEFAULT;

所以在正常的请求中,factor的值为7,所以这个新的NS的SRTT计算方法如下,也就是说这次请求的RTT在新的SRTT值的计算中权重占30%:old_srtt 0.7 + curr_rtt 0.3

3、在这次请求中计算了请求的NS的同时,还需要对其他的NS进行衰减计算,计算方法如下:

if (factor == DNS_ADB_RTTADJAGE)
     new_srtt = addr->entry->srtt * 98 / 100;

注释:即所有的SRTT赋值为原来的98%

4、如果本次NS请求以失败告终,即发出请求并没有得到应答的情况,这里就要对这个NS进行惩罚,计算方法如下:

INSIST(no_response);
     rtt = query->addrinfo->srtt + 200000;
     if (rtt > 10000000)
     rtt = 10000000;

注释:直接给SRTT加上200ms,且SRTT最大值不能超过10s

5、1800s后,所有的SRTT清零,重复以上的计算
这个1800来自源码的宏定义:

#define ADB_ENTRY_WINDOW        1800    /*%< seconds */

BIND9.9及以后版本的SRTT策略

1、首先BIND在第一次计算SRTT时为所有的NS记录一个初始化的值,用样的赋值方法,随机1-32us。

2、在所有的NS中选择SRTT最小的一个NS服务器发起解析请求,如得到应答则记录这次请求的RTT,并重新计算这个NS的SRTT,同样的计算方法old_srtt 0.7 + curr_rtt 0.3

3、其他NS的计算方法如下:

if (addr->entry->lastage != now) {
       new_srtt = addr->entry->srtt;
       new_srtt <<= 9;
       new_srtt -= addr->entry->srtt;
       new_srtt >>= 9;
       addr->entry->lastage = now;

注释:大概值为“SRTT = ((SRTT<<9)-SRTT)>>9”,即赋值为原来的SRTT的511/512,大概99.8%,这是BIND9.9和之前版本在计算SRTT中的一个最重要的差别

5、如果本次NS请求以失败告终,则惩罚方式如下:

INSIST(no_response);
rtt = query->addrinfo->srtt + 200000;
if (rtt > MAX_SINGLE_QUERY_TIMEOUT_US)
       rtt = MAX_SINGLE_QUERY_TIMEOUT_US;

注释:这里MAX_SINGLE_QUERY_TIMEOUT_US为宏定义,定义为

#define MAX_SINGLE_QUERY_TIMEOUT 9U
#define MAX_SINGLE_QUERY_TIMEOUT_US (MAX_SINGLE_QUERY_TIMEOUT*US_PER_SEC)

共9s,也就是SRTT的最大值降低了1s。值得说明的是,在BIND9.11中,这里的惩罚逻辑又有了变化,计算方法如下:

INSIST(no_response);
isc_random_get(&value);
if (query->addrinfo->srtt > 800000)
       mask = 0x3fff;
else if (query->addrinfo->srtt > 400000)
       mask = 0x7fff;
else if (query->addrinfo->srtt > 200000)
       mask = 0xffff;
else if (query->addrinfo->srtt > 100000)
       mask = 0x1ffff;
else if (query->addrinfo->srtt > 50000)
       mask = 0x3ffff;
else if (query->addrinfo->srtt > 25000)
       mask = 0x7ffff;
else
       mask = 0xfffff;
……
rtt = query->addrinfo->srtt + (value & mask);

注释:这里面根据当前SRTT值的不同,重新定义了一个随机数,而且是如果当前值的SRTT越小则惩罚的度量越大。

5、同样的1800s后,所有的SRTT清零,重复以上的计算SRTT策略&DNS解析质量。所以BIND的SRTT整个过程如下:
image

SRTT从设计上来说即兼顾了DNS异常依赖的优选以及容灾措施,在所有NS的存活的情况下能够保持绝大部分的递归请求可以优选最好的NS,同时在个别NS挂掉的情况下又能容灾切换至其他的NS。同时,根据BIND版本演进中的衰减/惩罚机制变化来看, BIND在保障容灾的前提下尽可能更加选择优选(衰减策略从原来BIND9.8版本的98%变更至BIND9.9版本的99.8%),因此对于被优选NS的质量也提出了更高要求。在此小编假设一种场景,对于BIND9.11版本的递归来讲如果一直优选的那个NS因为异常原因发生了丢包从而被递归惩罚,将使用更长的时间和次数来为这个NS进行衰减,从而有更长的时间/更多的递归次数不能被优选(比如一个原本20ms的NS因为一次丢包导致SRTT增加至220ms,那么需要2300次的衰减/或者等1800s过期才能使SRTT重新恢复至20ms),这对于递归的性能有本质上的影响。

因此,在衡量权威服务器本身性能的同时,是否拥有高质量的网络/是否拥有低丢包率的权威软硬件服务,也是重要的考量指标。在这里小编需要指出,阿里云在DNS这种互联网基础协议上持续进行基础设施的投入,使得云解析拥有全球高质量的BGP网络和自研的高性能DNS,几乎将云解析权威的丢包率降低为零,从而实现了更高质量的递归解析性能。

相关文章
|
23天前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
44 0
|
16天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
35 3
|
18天前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
4天前
|
域名解析 缓存 网络协议
浏览器中输入URL返回页面过程(超级详细)、DNS域名解析服务,TCP三次握手、四次挥手
浏览器中输入URL返回页面过程(超级详细)、DNS域名解析服务,TCP三次握手、四次挥手
|
11天前
|
监控 网络协议 安全
DNS服务器故障不容小觑,从应急视角谈DNS架构
DNS服务器故障不容小觑,从应急视角谈DNS架构
33 4
|
18天前
|
域名解析 网络协议
非阿里云注册域名如何在云解析DNS设置解析?
非阿里云注册域名如何在云解析DNS设置解析?
|
24天前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
33 1
|
28天前
|
弹性计算 网络协议 Ubuntu
如何在阿里云国际版Linux云服务器中自定义配置DNS
如何在阿里云国际版Linux云服务器中自定义配置DNS
|
27天前
|
域名解析 存储 缓存
域名解析 DNS:连接数字世界的关键枢纽
在数字世界中,DNS(域名解析系统)如同一位至关重要的引路人,将我们输入的域名与对应的IP地址相连,使我们可以轻松访问各种网站和服务。它通过多级服务器查询,将易于记忆的域名转换为复杂的IP地址,极大提升了互联网的易用性和普及度。尽管面临网络延迟和域名数量激增等挑战,通过分布式系统和缓存技术等创新方案,DNS 系统将持续发展,为用户提供更安全、高效的网络体验。
45 2

相关产品

  • 云解析DNS
  • 推荐镜像

    更多