APUE学习之多线程编程(一):线程的创建和销毁

简介: 一、线程标识      和每个进程都有一个进程ID一样,每个线程也有一个线程ID,线程ID是以pthread_t数据类型来表示的,在Linux中,用无符号长整型表示pthread_t,Solaris 把phread_t数据类型表示为无符号整型,FreeBSD 和Mac OS X 用一个指向pthread结构的指针来表示pthread_t数据类型。
一、线程标识
     和每个进程都有一个进程ID一样,每个线程也有一个线程ID,线程ID是以pthread_t数据类型来表示的,在Linux中,用无符号长整型表示pthread_t,Solaris 把phread_t数据类型表示为无符号整型,FreeBSD 和Mac OS X 用一个指向pthread结构的指针来表示pthread_t数据类型。
     可以使用pthread_self函数获得自身的线程ID。   
#include <pthread.h>
 pthread_t pthread_self(void);
 
二、线程创建
     使用pthread_create函数创建新线程 
#include <pthread.h>
int pthread_create(pthread_t *restrict tidp, const pthread_arrt_t *restrict addr, void *(*start_rtn)(void *), void *restrict arg);
     当pthread_create成功返回后,新创建线程的线程ID会被设置成tidp指向的内存单元,attr参数用于定制各种不同的线程属性,后面再讨论线程属性,现在先把它置为null,创建一个具有默认属性的线程。
     新创建的线程从start_rtn函数开始运行,该函数接收一个无类型指针的参数arg,如果要传给它的参数多于一个,可以把参数放到一个结构中,然后把结构的地址作为arg传入。
     线程新建后会继承调用线程的浮点环境和屏蔽字。
例子:   
#include "apue.h"
#include <pthread.h>

pthread_t ntid;

void printids(const char *s)
{
    pid_t pid;
    pthread_t tid;

    pid = getpid();
    tid = pthread_self();
    printf("%s pid %lu tid %lu (0x%lx)\n", s, (unsigned long)pid, (unsigned long)tid, (unsigned long)tid);
}

void *thr_fn(void *arg)
{
    printids("new thread: ");
    return ((void *)0);
}

int main(void)
{
    int err;

    err = pthread_create(&ntid, NULL, thr_fn, NULL);
    if (err != 0)
    {
        err_exit(err, "can't create thread");
    }

    printids("main thread: ");
    sleep(1);
    exit(0);
}
View Code
  这个程序有两个特别的地方:第一,主线程需要休眠,如果主线程不休眠,主线程会退出,新线程并没有机会运行。第二,新线程通过pthread_self(),获得自己的线程ID。
./a.out
main thread:  pid 27335 tid 3076404928 (0xb75e36c0)
new thread:  pid 27335 tid 3076401984 (0xb75e2b40)
View Code
  虽然Linux线程ID是用无符号长整型来表示的,但它们看起来更像指针。
 
三、线程终止
     如果任意线程调用了exit,_exit,_Exit,整个进程都会终止,这个要注意。
     单个线程可以通过以下三种方式退出,且不终止整个进程。
     1.线程可以简单地从启动例程中返回,返回值是线程的退出码。
     2.线程可以被同一进程中的其他线程取消。
     3.调用pthread_exit
 
     先来看pthread_exit退出的情况。
#include <pthread.h>
void pthread_exit(void *rval_ptr);

     ravl_ptr是无类型指针,进程中的其他线程可以通过pthread_join函数获得这个指针。

#include <pthread.h>
int pthread_join(pthread_t thread, void **rval_ptr);

     调用线程将一直阻塞,直至指定的线程退出,rval_ptr就包含返回码,如果线程被取消,rval_ptr指定的内存单元就设置为PTHREAD_CANCELED.可以通过调用pthread_join自动把线程置于分离状态,如果线程已处于分离状态,pthread_join就会调用失败。

例子:
#include "apue.h"
#include <pthread.h>
 
void *thr_fn1(void *arg)
{
    printf("thread 1 returning\n");
    return (void *)1;
}
 
void *thr_fn2(void *arg)
{
    printf("thread 2 exiting\n");
    pthread_exit((void *)2);
}
 
int main(void)
{
    int err;
    pthread_t tid1, tid2;
    void *tret;
 
    err = pthread_create(&tid1, NULL, thr_fn1, NULL);
 
    if (err != 0)
    {
        err_exit(err, "can't create thread1");
    }
 
    err = pthread_create(&tid2, NULL, thr_fn2, NULL);
 
    if (err != 0)
    {
        err_exit(err, "can't create thread2");
    }
 
    err = pthread_join(tid1, &tret);
 
    if (err != 0)
    {
        err_exit(err, "can't join thread1");
    }
 
    printf("thread1 exit code:%ld\n", (long)tret);
 
    err = pthread_join(tid2, &tret);
 
    if (err != 0)
    {
        err_exit(err, "can't join thread2");
    }
 
    printf("thread2 exit code:%ld\n", (long)tret);
 
    return 0;
}
View Code
./a.out
thread 2 exiting
thread 1 returning
thread1 exit code:1
thread2 exit code:2
View Code
  也可传递包含复杂消息的结构的地址,不过必须注意,这个结构所使用的内存必须在完成调用后仍是有效的。
      线程也可以调用pthread_cancel函数来请求取消同一进程的其他线程
#include <pthread.h>
int pthread_cancel(pthread_t tid);

     听着有点霸道,不过也只是请求而已,线程可以选择忽略这个请求。

     线程可以安排它退出时需要调用的函数,这样的函数是由pthread_cleanup_push注册在栈中的,所以执行顺序与注册时相反。
#include <pthread.h>
void pthread_cleanup_push(void(*rtn)(void *), void *arg);
void pthread_cleanup_pop(int execute);

     当线程执行以下动作时,清理函数rtn由pthread_cleanup_push函数调度

     1.调用pthread_exit时
     2.响应取消请求时
     3.用非零execute参数调用pthread_cleanup_pop时。
例子:
#include "apue.h"
#include <pthread.h>
 
void cleanup(void *arg)
{
    printf("cleanup: %s\n", (char *)arg);
}
 
void *thr_fn1(void *arg)
{
    printf("thread 1 start\n");
    pthread_cleanup_push(cleanup, "thread 1 first handler");
    pthread_cleanup_push(cleanup, "thread 1 second handler");
    printf("thread 1 push complete\n");
 
    if (arg)
    {
        return (void *)1;
    }
 
    pthread_cleanup_pop(0);
    pthread_cleanup_pop(0);
 
    return (void *)1;
}
 
void *thr_fn2(void *arg)
{
    printf("thread 2 start\n");
    pthread_cleanup_push(cleanup, "thread 2 first handler");
    pthread_cleanup_push(cleanup, "thread 2 second handler");
    printf("thread 2 push complete\n");
 
    if (arg)
    {
        pthread_exit((void *)2);
    }
 
    pthread_cleanup_pop(0);
    pthread_cleanup_pop(0);
 
    return (void *)2;
}
 
int main(void)
{
    int err;
    pthread_t tid1, tid2;
    void *tret;
 
    err = pthread_create(&tid1, NULL, thr_fn1, (void *)1);
    if (err != 0)
    {
        err_exit(err, "can't create thread 1");
    }
 
    err = pthread_create(&tid2, NULL, thr_fn2, (void *)1);
    if (err != 0)
    {
        err_exit(err, "can't create thread 2");
    }
 
    err = pthread_join(tid1, &tret);
    if (err != 0)
    {
        err_exit(err, "can't join with thread 1");
    }
    printf("thread 1 exit code %ld\n", (long)tret);
 
    err = pthread_join(tid2, &tret);
    if (err != 0)
    {
        err_exit(err, "can't join with thread 2");
    }
    printf("thread 2 exit code %ld\n", (long)tret);
 
    return 0;
}
View Code 
./a.out
thread 2 start
thread 2 push complete
cleanup: thread 2 second handler
cleanup: thread 2 first handler
thread 1 start
thread 1 push complete
thread 1 exit code 1
thread 2 exit code 2
View Code
     可知如果线程是通过它的启动例程中返回而终止的话,它的清理处理程序就不会被调用。
 
     在默认情况下,线程的终止状态会一直保存到对该线程调用pthread_join,如果该线程已经被分离,则底层的资源可以在线程终止时立即被收回,不用再调用pthread_join,且再调用pthread_join会出错。
#include <pthread.h>
int pthread_detach(pthread_t tid);
目录
相关文章
|
5月前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
196 0
|
8月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
138 26
|
8月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
143 17
|
9月前
|
Java 调度 开发者
Java线程池ExecutorService学习和使用
通过学习和使用Java中的 `ExecutorService`,可以显著提升并发编程的效率和代码的可维护性。合理配置线程池参数,结合实际应用场景,可以实现高效、可靠的并发处理。希望本文提供的示例和思路能够帮助开发者深入理解并应用 `ExecutorService`,实现更高效的并发程序。
212 10
|
10月前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
607 2
|
10月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
10月前
|
安全 Java API
【JavaEE】多线程编程引入——认识Thread类
Thread类,Thread中的run方法,在编程中怎么调度多线程
|
3月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
152 0
|
3月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
4月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
259 5

热门文章

最新文章