机器学习应用中的UI个性化

简介: 在这篇文章中,我们看看关于机器学习应用中的UI个性化问题,谈一谈为什么在应用程序开发的过程中交流和沟通是成功的关键。

        EdgVerve推出了基于AI的业务应用平台的新一代集成人工智能平台-Infosys Nia使你的企业能够管理特定的业务领域,并使其从确定性的方法转向认知的方法。

2c7ba80fc7b2f988eff46e6f02755a368573c2b5 

        由于机器学习的内在特性,设计者必须面对以友好的和可理解的方式呈现不同类型的数据问题。然而,我们致力的解决方案却很少仅供一种特定类型的人群来使用。

        当给这种类型的界面构建图形结构时,主要的挑战是实现一种平衡,这是它们所能提供给机器学习算法视觉层的和已知问题的实际解决方案的准备之间的平衡。

        无论我们是从头开始准备一个新界面还是根据现有应用程序创建另一个版本,实现满意结果的关键是理解算法是如何工作的,并准备一个适合于使用它的人群的个性化解决方案。为了实现这个目标,首先就是将要了解这些用户,了解他们都是谁,他们的数据是什么样的,以及他们适当的演示如何可以帮助他们提高工作效率。在集体紧缩(Collective Crunch)的情况下,另外一个因素是设备的位置和类型,通过位置和类型应用的界面将被显示。

 

机器学习应用中的UI个性化

        在实践中,应用界面的个性化是设计者们的主要任务,但是当定义项目的范围的时候,整个团队、客户和目标用户都应该参与其规划。

d2c20ae6ac49adf23929cbb49c2c9516de8cf432 

解决方案

        现代的设计方法提供了许多不同的工具,如营销角色、用户使用场景对应、甚至商业模型画布,它们可以促进和改善分析阶段。不管决定用哪些工具,我们的目标都应该是了解用户是如何工作的,然后了解他们的习惯,定义任何出现的问题,并通过头脑风暴来确定潜在的解决方案。

        然而,如果我们作为设计者不把时间和精力投入到理解机器学习算法工作的方式中,上面所提到的工具都不会带来实际的结果。

        意识到这种技术的局限性可以为我们节省在项目准备、实施和测试中的关键时刻的不必要的迭代和修改所使用的时间。因此,非常重要的是与整个团队的紧密协作,并使他们参与验证在设计过程中的每一个阶段所发生的一切。谈到整个团队,我们也指的是用户和目标用户的测试组。

        机器学习总是与敏感数据的展现相关联,这是借助于构成应用的核心算法来定义和计算的。这里重复一下,值得注意的是,开发团队可以提供不可否认的有价值的洞察力。简单的算法将需要一种数据表示方法,而在我们做数据分析的时候则需要其它的算法。在第一种情况下,最常见的将是定义界面主要元素的标准组件(例如卡、滑块组件、经典形式),而在后一种情况中,我们将经常会被迫去寻找那些更复杂的模块,例如散点图或蛛网图。当我们作为设计师的角色的时候,其实是通过一种方式进行选择和设计,对用户是可以理解的,对他们行动的意识,局限性,以及结合着咨询时的深思熟虑的分析,一定会提高我们的工作质量。

8ddc4fd98a466dada555f4809ebd0b4040525e40 

机器学习应用设计过程中的细节

        实现每个应用所需要的明确目标-基于机器学习项目的特征需要一些额外的项目分析过程,这有助于我们发现每个项目都是有差异的,因此我们不得不选择那些最有效地允许我们始终能够使用的方法:

*对机器学习造成的技术限制的意识;

*用户在日常工作中使用我们设计的应用所面临问题的意识;

*我们所操作的数据的精确范围和类型,以及引擎(算法)为我们准备界面的应用程序的工作方式。

        标准设计过程与机器学习设计的主要区别在于需要准备多次迭代  由于设计过程更长的原因,我们的目标应该是尽可能地减少这一点,并在工作过程中与整个团队紧密协作。归功于在分析和准备阶段投入更多的时间,并且之后在开发的界面元素的验证和测试阶段,甚至于在各个组件的级别上,我们也有一个更低的显著变化和修正的概率。记住上面提到的局限性,并定期与开发人员,还有用户进行咨询(根据他们的需求和目标),我们应该创建一个UI库以建立一个界面,准备好在各种情况下使用。这种方法允许我们在各种项目中使用准备好的模块。

设计机器学习应用时要特别注意的五个要素:

我们正在使用的是什么类型的数据以及它将如何显示;
目标用户需要什么样的分析数据以及数据的表示是如何帮助他们改进工作的;
在项目的每一个阶段中良好的沟通和密切协作——涉及到开发团队和项目团队,以及客户和用户。
机器学习算法是如何在这个项目中工作的,它是基于什么工作的,以及它的计算结果有多么精确;
使用UI和设计系统库来创建由测试组件构建的界面,准备在项目的各种实例中使用。

总结

        我们的经验表明,良好的沟通和直接获取来自目标用户群的反馈,显著缩短了基于机器学习的应用程序设计中的繁琐过程。归功于我们操作数据的特性以对开发团队的咨询结果,设计缺陷和不可用模块的可能性(由于缺乏对技术限制的认识或者面对用户提供的无价值的数据)急剧下降。在我们的项目中,创建了一个UI库,用来在同一个应用程序的其它实例中使用,投入时间致力于研究,创建营销角色,并咨询整个团队负责实施的结果,在设计过程中的效率会得到显著的提高,并允许我们几乎同时交付连续的原型。


数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《A Simple Machine Learning Project in JavaScript》

译者:奥特曼,审校:袁虎。

文章为简译,更为详细的内容,请查看原文

相关文章
|
7月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
3月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
333 8
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
4月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
|
4月前
|
机器学习/深度学习 存储 分布式计算
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。
|
10月前
|
前端开发 安全 开发工具
【11】flutter进行了聊天页面的开发-增加了即时通讯聊天的整体页面和组件-切换-朋友-陌生人-vip开通详细页面-即时通讯sdk准备-直播sdk准备-即时通讯有无UI集成的区别介绍-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
【11】flutter进行了聊天页面的开发-增加了即时通讯聊天的整体页面和组件-切换-朋友-陌生人-vip开通详细页面-即时通讯sdk准备-直播sdk准备-即时通讯有无UI集成的区别介绍-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
694 90
【11】flutter进行了聊天页面的开发-增加了即时通讯聊天的整体页面和组件-切换-朋友-陌生人-vip开通详细页面-即时通讯sdk准备-直播sdk准备-即时通讯有无UI集成的区别介绍-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
|
5月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
5月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
7月前
|
机器学习/深度学习 数据采集 人工智能
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
随着Web技术发展,动态加载数据的网站(如今日头条)对传统爬虫提出新挑战:初始HTML无完整数据、请求路径动态生成且易触发反爬策略。本文以爬取“AI”相关新闻为例,探讨了通过浏览器自动化、抓包分析和静态逆向接口等方法采集数据的局限性,并提出借助机器学习智能识别AJAX触发点的解决方案。通过特征提取与模型训练,爬虫可自动推测数据接口路径并高效采集。代码实现展示了如何模拟AJAX请求获取新闻标题、简介、作者和时间,并分类存储。未来,智能化将成为采集技术的发展趋势。
201 1
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用

热门文章

最新文章