Abstractive Sentence Summarization with Attentive Recurrent Neural Networks 阅读笔记

简介:

Abstractive Sentence Summarization with Attentive Recurrent Neural Networks

  • Sumit Chopra et al., Facebook AI Research
  • NAACL2016
  • sentence level
  • encoder: 使用了基于注意力的CNN

    • 先将词的原始embedding(x_i)和位置embedding(l_i)(可训练)相加,作为词的full embedding(a_i)
    • 然后使用size=5的一维卷积核做一个卷积操作,得到aggregate embedding(z_i)
    • 计算attention:
      RAS_attention

    h_t-1是t-1时刻的隐层状态(吧)

    • 计算t时刻encoder的输出c_t:
      RAS_ct
  • decoder: 普通的RNN和LSTM都试了

    • 状态更新:
      RAS_decoder
  • 模型encoder的输入每次都是一个完整地句子,decoder每次要输出的时候,会将h_t-1给encoder,encoder根据句子和h_t-1计算attention生成c_t给decoder,然后decoder根据(y_t-1, h_t-1, c_t)计算要输出的单词。encoder还要更新position embedding(l_i)
  • 性能(RAS-Elman, k=10, k means beam size):

    • DUC-2004: Rouge-1:28.97/Rouge-2:8.26/Rouge-L:24.06
    • Gigaword: Rouge-1:33.78/Rouge-2:15.97/Rouge-L:31.15
目录
相关文章
|
2月前
|
机器学习/深度学习 算法
生成对抗网络(Generative Adversarial Networks,简称GANs)
生成对抗网络(GANs)由Ian Goodfellow等人于2014年提出,是一种通过生成器和判别器的对抗训练生成逼真数据样本的深度学习模型。生成器创造数据,判别器评估真实性,两者相互竞争优化,广泛应用于图像生成、数据增强等领域。
|
5月前
|
机器学习/深度学习 算法 TensorFlow
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
本文探讨了使用复数卷积神经网络进行MRI图像重建的方法,强调了复数网络在保留相位信息和减少参数数量方面的优势,并通过实验分析了不同的复数激活函数、网络宽度、深度以及结构对模型性能的影响,得出复数模型在MRI重建任务中相对于实数模型具有更优性能的结论。
50 0
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
|
8月前
|
Python
[Knowledge Distillation]论文分析:Distilling the Knowledge in a Neural Network
[Knowledge Distillation]论文分析:Distilling the Knowledge in a Neural Network
50 1
|
机器学习/深度学习 算法
Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter论文解读
该论文针对Twitter网站的信息进行关键词提取,因为Twitter网站文章/对话长度受到限制,现有的方法通常效果会急剧下降。作者使用循环神经网络(recurrent neural network,RNN)来解决这一问题,相对于其他方法取得了更好的效果。
125 0
|
机器学习/深度学习 PyTorch 测试技术
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation 论文解读
我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近的基于transformer的模型由于在编码空间信息时self-attention的效率而主导了语义分割领域。在本文中,我们证明卷积注意力是比transformer中的self-attention更有效的编码上下文信息的方法。
422 0
|
机器学习/深度学习 存储 人工智能
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
110 0
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
|
机器学习/深度学习 自然语言处理 算法
【文本分类】Convolutional Neural Networks for Sentence Classification
【文本分类】Convolutional Neural Networks for Sentence Classification
105 0
【文本分类】Convolutional Neural Networks for Sentence Classification
|
机器学习/深度学习 大数据
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
159 0
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
|
机器学习/深度学习 数据建模
2_Recurrent Neural Networks (RNNs)循环神经网络 —Simple RNNs
2_Recurrent Neural Networks (RNNs)循环神经网络 —Simple RNNs
204 0
2_Recurrent Neural Networks (RNNs)循环神经网络 —Simple RNNs

热门文章

最新文章