《Rethinking Recurrent Neural Networks》电子版地址

简介: Rethinking Recurrent Neural Networks

《Rethinking Recurrent Neural Networks》Rethinking Recurrent Neural Networks

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
目录
相关文章
|
3月前
|
机器学习/深度学习 算法 TensorFlow
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
本文探讨了使用复数卷积神经网络进行MRI图像重建的方法,强调了复数网络在保留相位信息和减少参数数量方面的优势,并通过实验分析了不同的复数激活函数、网络宽度、深度以及结构对模型性能的影响,得出复数模型在MRI重建任务中相对于实数模型具有更优性能的结论。
35 0
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
|
6月前
|
机器学习/深度学习
[Highway]论文实现:Highway Networks
[Highway]论文实现:Highway Networks
39 2
|
6月前
|
Python
[Knowledge Distillation]论文分析:Distilling the Knowledge in a Neural Network
[Knowledge Distillation]论文分析:Distilling the Knowledge in a Neural Network
35 1
|
6月前
Simplifying Graph Convolutional Networks论文笔记
Simplifying Graph Convolutional Networks论文笔记
|
机器学习/深度学习 TensorFlow 语音技术
Convolutional Neural Network,简称 CNN
卷积神经网络(Convolutional Neural Network,简称 CNN)是一种深度学习模型,主要用于图像识别、物体检测、语音识别等任务。CNN 通过局部感知、权值共享和下采样等操作,能够有效地提取图像特征,从而实现对图像的分类和识别。
204 4
|
机器学习/深度学习 算法
Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter论文解读
该论文针对Twitter网站的信息进行关键词提取,因为Twitter网站文章/对话长度受到限制,现有的方法通常效果会急剧下降。作者使用循环神经网络(recurrent neural network,RNN)来解决这一问题,相对于其他方法取得了更好的效果。
101 0
《Understanding,generalisation,and transfer learning in deep neural networks》电子版地址
Understanding,generalisation,and transfer learning in deep neural networks
83 0
《Understanding,generalisation,and transfer learning in deep neural networks》电子版地址
|
机器学习/深度学习 编解码 固态存储
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(下)
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(下)
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(下)
|
机器学习/深度学习 存储 编解码
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(上)
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(上)
《Learning Disentangled Representations for Recommendation原文》电子版地址
Learning Disentangled Representations for Recommendation原文
73 0
《Learning Disentangled Representations for Recommendation原文》电子版地址