第03章节-Python3.5-今日Django工程的创建 2

简介: 用pychram创建Django程序file->New Projectimage.pngimage.pngimage.

用pychram创建Django程序

  1. file->New Project


    image.png
image.png
image.png

python manage.py startapp app01

image.png
  • 配置settings.py 文件


    image.png
image.png

最后一行添加以下:

STATICFILES_DIRS = (
    os.path.join(BASE_DIR, 'static'),
)
image.png
  • 修改urls.py
from django.conf.urls import url
from django.contrib import admin
from app01 import views

urlpatterns = [
    url(r'^admin/', admin.site.urls),
    url(r'^index/', views.index),
]
image.png
  • 修改views.py
from django.shortcuts import render,HttpResponse

# Create your views here.


def index(request):
    return HttpResponse('Index')
image.png
image.png
  • 基本程序效果图:


    image.png

@进一步

image.png
  • 修改urls.py
from django.conf.urls import url
from django.contrib import admin
from app01 import views

urlpatterns = [
    url(r'^admin/', admin.site.urls),
    url(r'^index/', views.index),
    url(r'^login/', views.login),
]
image.png
  • 修改views.py
from django.shortcuts import render,HttpResponse,redirect

# Create your views here.


def index(request):
    return HttpResponse('Index')


def login(request):
    # 判断用户获取数据方式是GET,就返回什么数据
    if request.method == "GET":
        return render(request, 'login.html')
    # 判断用户获取数据方式是POST,就判断用户提交的数据是否正确
    elif request.method == "POST":
        u = request.POST.get('user')
        p = request.POST.get('pwd')
        if u == 'alex' and p == '123':
            return redirect('/index/')
        else:
            return render(request, 'login.html')
    else:
        # PUT,DELETE,HEAD,OPTION...
        return redirect("/index/")

image.png
  • 修改login.html
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
</head>
<body>

    <form action="/login/" method="post">
        <p>
            <input type="text" name="user" placeholder="用户名">
        </p>
        <p>
            <input type="password" name="pwd" placeholder="密码">
        </p>
        <input type="submit" value="提交">

    </form>

</body>
</html>
image.png
  • 效果图:


    image.png
image.png
目录
相关文章
|
10月前
|
机器学习/深度学习 数据可视化 算法
Python数值方法在工程和科学问题解决中的应用
本文探讨了Python数值方法在工程和科学领域的广泛应用。首先介绍了数值计算的基本概念及Python的优势,如易学易用、丰富的库支持和跨平台性。接着分析了Python在有限元分析、信号处理、优化问题求解和控制系统设计等工程问题中的应用,以及在数据分析、机器学习、模拟建模和深度学习等科学问题中的实践。通过具体案例,展示了Python解决实际问题的能力,最后总结展望了Python在未来工程和科学研究中的发展潜力。
322 0
|
8月前
|
Linux 数据库 数据安全/隐私保护
Python web Django快速入门手册全栈版,共2590字,短小精悍
本教程涵盖Django从安装到数据库模型创建的全流程。第一章介绍Windows、Linux及macOS下虚拟环境搭建与Django安装验证;第二章讲解项目创建、迁移与运行;第三章演示应用APP创建及项目汉化;第四章说明超级用户创建与后台登录;第五章深入数据库模型设计,包括类与表的对应关系及模型创建步骤。内容精炼实用,适合快速入门Django全栈开发。
383 1
|
前端开发 JavaScript UED
探索Python Django中的WebSocket集成:为前后端分离应用添加实时通信功能
通过在Django项目中集成Channels和WebSocket,我们能够为前后端分离的应用添加实时通信功能,实现诸如在线聊天、实时数据更新等交互式场景。这不仅增强了应用的功能性,也提升了用户体验。随着实时Web应用的日益普及,掌握Django Channels和WebSocket的集成将为开发者开启新的可能性,推动Web应用的发展迈向更高层次的实时性和交互性。
345 1
|
10月前
|
前端开发 JavaScript 关系型数据库
基于python的租房网站-房屋出租租赁系统(python+django+vue)源码+运行
该项目是基于python/django/vue开发的房屋租赁系统/租房平台,作为本学期的课程作业作品。欢迎大家提出宝贵建议。
389 6
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
1691 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
782 45
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
564 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
620 7
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
494 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
506 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台

推荐镜像

更多