Java的nanoTime()

简介: java有两个获取和时间相关的秒数方法,一个是广泛使用的 System.currentTimeMillis()   返回的是从一个长整型结果,表示毫秒。 另一个是 System.nanoTime()   返回的是纳秒。

java有两个获取和时间相关的秒数方法,一个是广泛使用的

System.currentTimeMillis()
 

返回的是从一个长整型结果,表示毫秒。

另一个是

System.nanoTime()
 

返回的是纳秒。

 

“纳”这个单位 一般不是第一次见。前几年相当火爆的“纳米”和他是同一级别。纳表示的是10的-9次方。在真空中,光一纳秒也只能传播30厘米。

比纳秒大一级别的是微秒,10的-6次方;然后是就是毫秒,10的-3次方。

纳秒下面还有皮秒、飞秒等。

 

既然纳秒比毫秒高10的6次方精度,那么他们的比值就应该是10的6次方。然而并非如此。

看下面的代码

public static void main(String[] args) {
    long l = System.currentTimeMillis();
    Date date = new Date(l);
    System.out.println(l);
    System.out.println(date);
}
 

最后输出的当前时间。

大家可能都知道毫秒方法返回的是自1970年到现在的毫秒数。而Java的日期也是如此,所以他俩是等值的。

但是使用纳秒方法的输出可能让我们丈二和尚摸不着头脑:

public static void main(String[] args) {
    long l = System.nanoTime();
    Date date = new Date(l / 1_000_000);
    System.out.println(l);
    System.out.println(date);
}
 

这个输出在不同的机器上可能不一样,我的输出是Fri Jan 02 07:58:38 CST 1970

 

为什么会这样?

根据纳秒方法的注释:

Returns the current value of the running Java Virtual Machine's high-resolution time source, in nanoseconds.
This method can only be used to measure elapsed time and is not related to any other notion of system or wall-clock time. The value returned represents nanoseconds since some fixed but arbitrary origin time (perhaps in the future, so values may be negative). The same origin is used by all invocations of this method in an instance of a Java virtual machine; other virtual machine instances are likely to use a different origin.

翻译一下就是:返回当前JVM的高精度时间。该方法只能用来测量时段而和系统时间无关。它的返回值是从某个固定但随意的时间点开始的(可能是未来的某个时间)。不同的JVM使用的起点可能不同。

 

这样有点恐怖的是我们相同的代码在不同机器运行导致结果可能不同。

所以它很少用来计算。通常都是测量。

 

下面写一个程序来反映他和毫秒方法的关系。

  Lists.newArrayList(1,2,3,4,5,6,7,8,9).parallelStream().forEach(i -> {
        long m = System.currentTimeMillis();
        long n = System.nanoTime();
        try {
            Thread.sleep(1000);
        } catch (InterruptedException ignored) {
        }
        long m1 = System.currentTimeMillis();
        long n1 = System.nanoTime();
        long m0 = m1 - m;
        long n0 = n1 - n;

        System.out.println(i + " -- " + (n0 / m0));
    });
}
 

输出如下:

3 -- 999756
6 -- 1000129
2 -- 999984
4 -- 999868
5 -- 999019
1 -- 999100
8 -- 999768
7 -- 999753
9 -- 1000139

不同的测试可能结果不同,不过可以看到,这个比值大约是10的6次方。

目录
相关文章
SpringBoot之文件上传(单文件与多文件上传的使用)
SpringBoot之文件上传(单文件与多文件上传的使用)
274 1
|
XML Java Android开发
Android Studio App开发之使用相机拍摄照片和从相册中选取图片(附源码 超详细必看)
Android Studio App开发之使用相机拍摄照片和从相册中选取图片(附源码 超详细必看)
1989 2
|
Java
IDEA 2022 SpringBoot启动 (Services) Run Dashboard 不显示 端口号
IDEA 2022 SpringBoot启动 (Services) Run Dashboard 不显示 端口号
4590 0
IDEA 2022 SpringBoot启动 (Services) Run Dashboard 不显示 端口号
|
监控 调度 开发工具
IO神器blktrace使用介绍
## 前言 1. blktrace的作者正是block io的maintainer,开发此工具,可以更好的追踪IO的过程。 2. blktrace 结合btt可以统计一个IO是在调度队列停留的时间长,还是在硬件上消耗的时间长,利用这个工具可以协助分析和优化问题。 ## blktrace的原理 一个I/O请求的处理过程,可以梳理为这样一张简单的图: ![](http://image
20198 0
|
人工智能 供应链 监控
数字孪生与农业:精准农业的发展趋势
数字孪生技术正逐步渗透到农业生产的各个环节,通过创建物理实体的数字副本,实现对实体状态的精确模拟和预测。在农业领域,这一技术的应用正引领着精准农业的发展趋势,包括智慧栽培、环境智能控制、精准农业管理和农业供应链优化等方面,为农业生产的智能化、高效化和可持续发展提供了强大的技术支持。
|
运维 监控 Java
【JVM 调优秘籍】实战指南:JVM 调优参数全解析,让 Java 应用程序性能飙升!
【8月更文挑战第24天】本文通过一个大型在线零售平台的例子,深入探讨了Java虚拟机(JVM)性能调优的关键技术。面对应用响应延迟的问题,文章详细介绍了几种常用的JVM参数调整策略,包括堆内存大小、年轻代配置、垃圾回收器的选择及日志记录等。通过具体实践(如设置`-Xms`, `-Xmx`, `-XX:NewRatio`, `-XX:+UseParallelGC`等),成功降低了高峰期的响应时间,提高了系统的整体性能与稳定性。案例展示了合理配置JVM参数的重要性及其对解决实际问题的有效性。
495 0
|
移动开发 前端开发 JavaScript
如何向后兼容性
如何向后兼容性
|
存储 缓存 监控
Redis高可用之主从复制、哨兵、cluster集群
Redis高可用之主从复制、哨兵、cluster集群
421 0
|
SQL 数据可视化 关系型数据库
MySQL命令行与可视化工具
MySQL命令行与可视化工具
|
Java Linux API
单调时钟与墙上时钟的区别?ntp如何优雅校时?
单调时钟与墙上时钟的区别?ntp如何优雅校时?
566 0
单调时钟与墙上时钟的区别?ntp如何优雅校时?
下一篇
oss云网关配置