【Nebula系列】C++反射机制:可变参数模板实现C++反射

简介:   本文描述一个通过C++可变参数模板实现C++反射机制的方法。该方法非常实用,在Nebula高性能网络框架中大量应用,实现了非常强大的动态加载动态创建功能。Nebula框架在Github的仓库地址。

1. 概要

  本文描述一个通过C++可变参数模板实现C++反射机制的方法。该方法非常实用,在Nebula高性能网络框架中大量应用,实现了非常强大的动态加载动态创建功能。Nebula框架在Github的仓库地址

  C++11的新特性--可变模版参数(variadic templates)是C++11新增的最强大的特性之一,它对参数进行了高度泛化,它能表示0到任意个数、任意类型的参数。关于可变参数模板的原理和应用不是本文重点,不过通过本文中的例子也可充分了解可变参数模板是如何应用的。

  熟悉Java或C#的同学应该都知道反射机制,很多有名的框架都用到了反射这种特性,简单的理解就是只根据类的名字(字符串)创建类的实例。 C++并没有直接从语言上提供反射机制给我们用,不过无所不能的C++可以通过一些trick来实现反射。Bwar也是在开发Nebula框架的时候需要用到反射机制,在网上参考了一些资料结合自己对C++11可变参数模板的理解实现了C++反射。


2. C++11之前的模拟反射机制实现

  Nebula框架是一个高性能事件驱动通用网络框架,框架本身无任何业务逻辑实现,却为快速实现业务提供了强大的功能、统一的接口。业务逻辑通过从Nebula的Actor类接口编译成so动态库,Nebula加载业务逻辑动态库实现各种功能Server,开发人员只需专注于业务逻辑代码编写,网络通信、定时器、数据序列化反序列化、采用何种通信协议等全部交由框架完成。

  开发人员编写的业务逻辑类从Nebula的基类派生,但各业务逻辑派生类对Nebula来说是完全未知的,Nebula需要加载这些动态库并创建动态库中的类实例就需要用到反射机制。第一版的Nebula及其前身Starship框架以C++03标准开发,未知类名、未知参数个数、未知参数类型、更未知实参的情况下,Bwar没想到一个有效的加载动态库并创建类实例的方式。为此,将所有业务逻辑入口类的构造函数都设计成无参构造函数。

  Bwar在2015年未找到比较好的实现,自己想了一种较为取巧的加载动态库并创建类实例的方法(这还不是反射机制,只是实现了可以或需要反射机制来实现的功能)。这个方法在Nebula的C++03版本中应用并实测通过,同时也是在一个稳定运行两年多的IM底层框架Starship中应用。下面给出这种实现方法的代码:

CmdHello.hpp:

#ifdef __cplusplus
extern "C" {
#endif
// @brief 创建函数声明
// @note 插件代码编译成so后存放到plugin目录,框架加载动态库后调用create()创建插件类实例。
neb::Cmd* create();
#ifdef __cplusplus
}
#endif

namespace im
{

class CmdHello: public neb::Cmd
{
public:
    CmdHello();
    virtual ~CmdHello();
    virtual bool AnyMessage();
};

} /* namespace im */

CmdHello.cpp:

#include "CmdHello.hpp"

#ifdef __cplusplus
extern "C" {
#endif
neb::Cmd* create()
{
    neb::Cmd* pCmd = new im::CmdHello();
    return(pCmd);
}
#ifdef __cplusplus
}
#endif

namespace im
{

CmdHello::CmdHello()
{
}

CmdHello::~CmdHello()
{
}

bool CmdHello::AnyMessage()
{
    std::cout << "CmdHello" << std::endl;
    return(true);
}

}

  实现的关键在于create()函数,虽然每个动态库都写了create()函数,但动态库加载时每个create()函数的地址是不一样的,通过不同地址调用到的函数也就是不一样的,所以可以创建不同的实例。下面给出动态库加载和调用create()函数,创建类实例的代码片段:

void* pHandle = NULL;
    pHandle = dlopen(strSoPath.c_str(), RTLD_NOW);
    char* dlsym_error = dlerror();
    if (dlsym_error)
    {
        LOG4_FATAL("cannot load dynamic lib %s!" , dlsym_error);
        if (pHandle != NULL)
        {
            dlclose(pHandle);
        }
        return(pSo);
    }
    CreateCmd* pCreateCmd = (CreateCmd*)dlsym(pHandle, strSymbol.c_str());
    dlsym_error = dlerror();
    if (dlsym_error)
    {
        LOG4_FATAL("dlsym error %s!" , dlsym_error);
        dlclose(pHandle);
        return(pSo);
    }
    Cmd* pCmd = pCreateCmd();

  对应这动态库加载代码片段的配置文件如下:

{"cmd":10001, "so_path":"plugins/CmdHello.so", "entrance_symbol":"create", "load":false, "version":1}

  这些代码实现达到了加载动态库并创建框架未知类实例的目的。不过没有反射机制那么灵活,用起来也稍显麻烦,开发人员写好业务逻辑类之后还需要实现一个对应的全局create()函数。

3. C++反射机制实现思考

  Bwar曾经用C++模板封装过一个基于pthread的通用线程类。下面是这个线程模板类具有代表性的一个函数实现,对设计C++反射机制实现有一定的启发:

template <typename T>
void CThread<T>::StartRoutine(void* para)
{
    T* pT;
    pT = (T*) para;
    pT->Run();
}

  与之相似,创建一个未知的类实例可以通过new T()的方式来实现,如果是带参数的构造函数,则可以new T(T1, T2)来实现。那么,通过类名创建类实例,建立"ClassName"与T的对应关系,或者建立"ClassName"与包含了new T()语句的函数的对应关系即可实现无参构造类的反射机制。考虑到new T(T1, T2)的参数个数和参数类型都未知,应用C++11的可变参数模板解决参数问题,即完成带参构造类的反射机制。

4. Nebula网络框架中的C++反射机制实现

  研究C++反射机制实现最重要是Nebula网络框架中有极其重要的应用,而Nebula框架在实现并应用了反射机制之后代码量精简了10%左右,同时易用性也有了很大的提高,再考虑到应用反射机制后给基于Nebula的业务逻辑开发带来的好处,可以说反射机制是Nebula框架仅次于以C++14标准重写的重大提升。

  Nebula的Actor为事件(消息)处理者,所有业务逻辑均抽象成事件和事件处理,反射机制正是应用在Actor的动态创建上。Actor分为Cmd、Module、Step、Session四种不同类型。业务逻辑代码均通过从这四种不同类型时间处理者派生子类来实现,专注于业务逻辑实现,而无须关注业务逻辑之外的内容。Cmd和Module都是消息处理入库,业务开发人员定义了什么样的Cmd和Module对框架而言是未知的,因此这些Cmd和Module都配置在配置文件里,Nebula通过配置文件中的Cmd和Module的名称(字符串)完成它们的实例创建。通过反射机制动态创建Actor的关键代码如下:

Actor类

class Actor: public std::enable_shared_from_this<Actor>

Actor创建工厂(注意看代码注释):

template<typename ...Targs>
class ActorFactory
{
public:
    static ActorFactory* Instance()
    {
        if (nullptr == m_pActorFactory)
        {
            m_pActorFactory = new ActorFactory();
        }
        return(m_pActorFactory);
    }

    virtual ~ActorFactory(){};

    // 将“实例创建方法(DynamicCreator的CreateObject方法)”注册到ActorFactory,注册的同时赋予这个方法一个名字“类名”,后续可以通过“类名”获得该类的“实例创建方法”。这个实例创建方法实质上是个函数指针,在C++11里std::function的可读性比函数指针更好,所以用了std::function。
    bool Regist(const std::string& strTypeName, std::function<Actor*(Targs&&... args)> pFunc);

    // 传入“类名”和参数创建类实例,方法内部通过“类名”从m_mapCreateFunction获得了对应的“实例创建方法(DynamicCreator的CreateObject方法)”完成实例创建操作。
    Actor* Create(const std::string& strTypeName, Targs&&... args);

private:
    ActorFactory(){};
    static ActorFactory<Targs...>* m_pActorFactory;
    std::unordered_map<std::string, std::function<Actor*(Targs&&...)> > m_mapCreateFunction;
};

template<typename ...Targs>
ActorFactory<Targs...>* ActorFactory<Targs...>::m_pActorFactory = nullptr;

template<typename ...Targs>
bool ActorFactory<Targs...>::Regist(const std::string& strTypeName, std::function<Actor*(Targs&&... args)> pFunc)
{
    if (nullptr == pFunc)
    {
        return (false);
    }
    bool bReg = m_mapCreateFunction.insert(
                    std::make_pair(strTypeName, pFunc)).second;
    return (bReg);
}

template<typename ...Targs>
Actor* ActorFactory<Targs...>::Create(const std::string& strTypeName, Targs&&... args)
{
    auto iter = m_mapCreateFunction.find(strTypeName);
    if (iter == m_mapCreateFunction.end())
    {
        return (nullptr);
    }
    else
    {
        return (iter->second(std::forward<Targs>(args)...));
    }
}

动态创建类(注意看代码注释):

template<typename T, typename...Targs>
class DynamicCreator
{
public:
    struct Register
    {
        Register()
        {
            char* szDemangleName = nullptr;
            std::string strTypeName;
#ifdef __GNUC__
            szDemangleName = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, nullptr);
#else
            // 注意:这里不同编译器typeid(T).name()返回的字符串不一样,需要针对编译器写对应的实现
            //in this format?:     szDemangleName =  typeid(T).name();
            szDemangleName = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, nullptr);
#endif
            if (nullptr != szDemangleName)
            {
                strTypeName = szDemangleName;
                free(szDemangleName);
            }
            ActorFactory<Targs...>::Instance()->Regist(strTypeName, CreateObject);
        }
        inline void do_nothing()const { };
    };

    DynamicCreator()
    {
        m_oRegister.do_nothing();   // 这里的函数调用虽无实际内容,却是在调用动态创建函数前完成m_oRegister实例创建的关键
    }
    virtual ~DynamicCreator(){};

    // 动态创建实例的方法,所有Actor实例均通过此方法创建。这是个模板方法,实际上每个Actor的派生类都对应了自己的CreateObject方法。
    static T* CreateObject(Targs&&... args)
    {
        T* pT = nullptr;
        try
        {
            pT = new T(std::forward<Targs>(args)...);
        }
        catch(std::bad_alloc& e)
        {
            return(nullptr);
        }
        return(pT);
    }

private:
    static Register m_oRegister;
};

template<typename T, typename ...Targs>
typename DynamicCreator<T, Targs...>::Register DynamicCreator<T, Targs...>::m_oRegister;

  上面ActorFactory和DynamicCreator就是C++反射机制的全部实现。要完成实例的动态创建还需要类定义必须满足(模板)要求。下面看一个可以动态创建实例的CmdHello类定义(注意看代码注释):

// 类定义需要使用多重继承。
// 第一重继承neb::Cmd是CmdHello的实际基类(neb::Cmd为Actor的派生类,Actor是什么在本节开始的描述中有说明);
// 第二重继承为通过类名动态创建实例的需要,与template<typename T, typename...Targs> class DynamicCreator定义对应着看就很容易明白第一个模板参数(CmdHello)为待动态创建的类名,其他参数为该类的构造函数参数。
// 如果参数为某个类型的指针或引用,作为模板参数时应指定到类型。比如: 参数类型const std::string&只需在neb::DynamicCreator的模板参数里填std::string。
class CmdHello: public neb::Cmd, public neb::DynamicCreator<CmdHello, int32>
{
public:
    CmdHello(int32 iCmd);
    virtual ~CmdHello();

    virtual bool Init();
    virtual bool AnyMessage(
                    std::shared_ptr<neb::SocketChannel> pChannel,
                    const MsgHead& oMsgHead,
                    const MsgBody& oMsgBody);
};

  再看看上面的反射机制是怎么调用的:

template <typename ...Targs>
std::shared_ptr<Cmd> WorkerImpl::MakeSharedCmd(Actor* pCreator, const std::string& strCmdName, Targs... args)
{
    LOG4_TRACE("%s(CmdName \"%s\")", __FUNCTION__, strCmdName.c_str());
    Cmd* pCmd = dynamic_cast<Cmd*>(ActorFactory<Targs...>::Instance()->Create(strCmdName, std::forward<Targs>(args)...));
    if (nullptr == pCmd)
    {
        LOG4_ERROR("failed to make shared cmd \"%s\"", strCmdName.c_str());
        return(nullptr);
    }
    ...
}

  MakeSharedCmd()方法的调用:

MakeSharedCmd(nullptr, oCmdConf["cmd"][i]("class"), iCmd);

  至此通过C++可变参数模板实现C++反射机制实现已全部讲完,相信读到这里已经有了一定的理解,这是Nebula框架的核心功能之一,已有不少基于Nebula的应用实践,是可用于生产的C++反射实现。

  这个C++反射机制的应用容易出错的地方是

  • 类定义class CmdHello: public neb::Cmd, public neb::DynamicCreator<CmdHello, int32>中的模板参数一定要与构造函数中的参数类型严格匹配(不明白的请再阅读一遍CmdHello类定义)。
  • 调用创建方法的地方传入的实参类型必须与形参类型严格匹配。不能有隐式的类型转换,比如类构造函数的形参类型为unsigned int,调用ActorFactory<Targs...>::Instance()->Create()时传入的实参为int或short或unsigned short或enum都会导致ActorFactory无法找到对应的“实例创建方法”,从而导致不能通过类名正常创建实例。

  注意以上两点,基本就不会有什么问题了。

5. 一个可执行的例子

  上面为了说明C++反射机制给出的代码全都来自Nebula框架。最后再提供一个可执行的例子加深理解。

DynamicCreate.cpp:

#include <string>
#include <iostream>
#include <typeinfo>
#include <memory>
#include <unordered_map>
#include <cxxabi.h>

namespace neb
{

class Actor
{
public:
    Actor(){std::cout << "Actor construct" << std::endl;}
    virtual ~Actor(){};
    virtual void Say()
    {
        std::cout << "Actor" << std::endl;
    }
};

template<typename ...Targs>
class ActorFactory
{
public:
    //typedef Actor* (*ActorCreateFunction)();
    //std::function< Actor*(Targs...args) > pp;

    static ActorFactory* Instance()
    {
        std::cout << "static ActorFactory* Instance()" << std::endl;
        if (nullptr == m_pActorFactory)
        {
            m_pActorFactory = new ActorFactory();
        }
        return(m_pActorFactory);
    }

    virtual ~ActorFactory(){};

    //Lambda: static std::string ReadTypeName(const char * name)

    //bool Regist(const std::string& strTypeName, ActorCreateFunction pFunc)
    //bool Regist(const std::string& strTypeName, std::function<Actor*()> pFunc)
    bool Regist(const std::string& strTypeName, std::function<Actor*(Targs&&... args)> pFunc)
    {
        std::cout << "bool ActorFactory::Regist(const std::string& strTypeName, std::function<Actor*(Targs... args)> pFunc)" << std::endl;
        if (nullptr == pFunc)
        {
            return(false);
        }
        std::string strRealTypeName = strTypeName;
        //[&strTypeName, &strRealTypeName]{int iPos = strTypeName.rfind(' '); strRealTypeName = std::move(strTypeName.substr(iPos+1, strTypeName.length() - (iPos + 1)));};

        bool bReg = m_mapCreateFunction.insert(std::make_pair(strRealTypeName, pFunc)).second;
        std::cout << "m_mapCreateFunction.size() =" << m_mapCreateFunction.size() << std::endl;
        return(bReg);
    }

    Actor* Create(const std::string& strTypeName, Targs&&... args)
    {
        std::cout << "Actor* ActorFactory::Create(const std::string& strTypeName, Targs... args)" << std::endl;
        auto iter = m_mapCreateFunction.find(strTypeName);
        if (iter == m_mapCreateFunction.end())
        {
            return(nullptr);
        }
        else
        {
            //return(iter->second());
            return(iter->second(std::forward<Targs>(args)...));
        }
    }

private:
    ActorFactory(){std::cout << "ActorFactory construct" << std::endl;};
    static ActorFactory<Targs...>* m_pActorFactory;   
    std::unordered_map<std::string, std::function<Actor*(Targs&&...)> > m_mapCreateFunction;
};

template<typename ...Targs>
ActorFactory<Targs...>* ActorFactory<Targs...>::m_pActorFactory = nullptr;

template<typename T, typename ...Targs>
class DynamicCreator
{
public:
    struct Register
    {
        Register()
        {
            std::cout << "DynamicCreator.Register construct" << std::endl;
            char* szDemangleName = nullptr;
            std::string strTypeName;
#ifdef __GNUC__
            szDemangleName = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, nullptr);
#else
            //in this format?:     szDemangleName =  typeid(T).name();
            szDemangleName = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, nullptr);
#endif
            if (nullptr != szDemangleName)
            {
                strTypeName = szDemangleName;
                free(szDemangleName);
            }

            ActorFactory<Targs...>::Instance()->Regist(strTypeName, CreateObject);
        }
        inline void do_nothing()const { };
    };
    DynamicCreator()
    {
        std::cout << "DynamicCreator construct" << std::endl;
        m_oRegister.do_nothing();
    }
    virtual ~DynamicCreator(){m_oRegister.do_nothing();};

    static T* CreateObject(Targs&&... args)
    {
        std::cout << "static Actor* DynamicCreator::CreateObject(Targs... args)" << std::endl;
        return new T(std::forward<Targs>(args)...);
    }

    virtual void Say()
    {
        std::cout << "DynamicCreator say" << std::endl;
    }
    static Register m_oRegister;
};

template<typename T, typename ...Targs>
typename DynamicCreator<T, Targs...>::Register DynamicCreator<T, Targs...>::m_oRegister;

class Cmd: public Actor, public DynamicCreator<Cmd>
{
public:
    Cmd(){std::cout << "Create Cmd " << std::endl;}
    virtual void Say()
    {
        std::cout << "I am Cmd" << std::endl;
    }
};

class Step: public Actor, DynamicCreator<Step, std::string, int>
{
public:
    Step(const std::string& strType, int iSeq){std::cout << "Create Step " << strType << " with seq " << iSeq << std::endl;}
    virtual void Say()
    {
        std::cout << "I am Step" << std::endl;
    }
};

class Worker
{
public:
    template<typename ...Targs>
    Actor* CreateActor(const std::string& strTypeName, Targs&&... args)
    {
        Actor* p = ActorFactory<Targs...>::Instance()->Create(strTypeName, std::forward<Targs>(args)...);
        return(p);
    }
};

}

int main()
{
    //Actor* p1 = ActorFactory<std::string, int>::Instance()->Create(std::string("Cmd"), std::string("neb::Cmd"), 1001);
    //Actor* p3 = ActorFactory<>::Instance()->Create(std::string("Cmd"));
    neb::Worker W;
    neb::Actor* p1 = W.CreateActor(std::string("neb::Cmd"));
    p1->Say();
    //std::cout << abi::__cxa_demangle(typeid(Worker).name(), nullptr, nullptr, nullptr) << std::endl;
    std::cout << "----------------------------------------------------------------------" << std::endl;
    neb::Actor* p2 = W.CreateActor(std::string("neb::Step"), std::string("neb::Step"), 1002);
    p2->Say();
    return(0);
}

  Nebula框架是用C++14标准写的,在Makefile中有预编译选项,可以用C++11标准编译,但未完全支持C++11全部标准的编译器可能无法编译成功。实测g++ 4.8.5不支持可变参数模板,建议采用gcc 5.0以后的编译器,最好用gcc 6,Nebula用的是gcc6.4。

  这里给出的例子DynamicCreate.cpp可以这样编译:

 g++ -std=c++11 DynamicCreate.cpp -o DynamicCreate

  程序执行结果如下:

DynamicCreator.Register construct
static ActorFactory* Instance()
ActorFactory construct
bool ActorFactory::Regist(const std::string& strTypeName, std::function<Actor*(Targs... args)> pFunc)
m_mapCreateFunction.size() =1
DynamicCreator.Register construct
static ActorFactory* Instance()
ActorFactory construct
bool ActorFactory::Regist(const std::string& strTypeName, std::function<Actor*(Targs... args)> pFunc)
m_mapCreateFunction.size() =1
static ActorFactory* Instance()
Actor* ActorFactory::Create(const std::string& strTypeName, Targs... args)
static Actor* DynamicCreator::CreateObject(Targs... args)
Actor construct
DynamicCreator construct
Create Cmd
I am Cmd
----------------------------------------------------------------------
static ActorFactory* Instance()
Actor* ActorFactory::Create(const std::string& strTypeName, Targs... args)
static Actor* DynamicCreator::CreateObject(Targs... args)
Actor construct
DynamicCreator construct
Create Step neb::Step with seq 1002
I am Step

  完毕,周末花了6个小时才写完,找了个合适的时间发布出来。如果觉得这篇文章对你有用,如果觉得Nebula还可以,麻烦到GitHub上给个star,感谢。 Nebula不仅是一个框架,还提供了一系列基于这个框架的应用,目标是打造一个高性能分布式服务集群解决方案。


参考资料:

作者:Bwar 出处:https://www.cnblogs.com/bwar/

Bwar倾力打造的高性能网络框架Nebula:https://github.com/Bwar/Nebula

原创文章如转载,请注明出处。本文首发于博客园。

目录
相关文章
|
3月前
|
存储 算法 C++
C++ STL 初探:打开标准模板库的大门
C++ STL 初探:打开标准模板库的大门
126 10
|
5月前
|
编译器 C++
【C++】——初识模板
【C++】——初识模板
【C++】——初识模板
|
2月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
63 4
|
2月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
37 3
|
2月前
|
存储 安全 编译器
【c++】深入理解别名机制--引用
本文介绍了C++中的引用概念及其定义、特性、实用性和与指针的区别。引用是C++中的一种别名机制,通过引用可以实现类似于指针的功能,但更安全、简洁。文章详细解释了引用的定义方式、引用传参和返回值的应用场景,以及常引用的使用方法。最后,对比了引用和指针的异同,强调了引用在编程中的重要性和优势。
44 1
|
2月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
33 0
|
3月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
24 1
|
3月前
|
存储 编译器 C++
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
55 9
|
3月前
|
安全 测试技术 C++
【C++篇】从零实现 C++ Vector:深度剖析 STL 的核心机制与优化2
【C++篇】从零实现 C++ Vector:深度剖析 STL 的核心机制与优化
78 6
|
3月前
|
安全 测试技术 C++
【C++篇】从零实现 C++ Vector:深度剖析 STL 的核心机制与优化1
【C++篇】从零实现 C++ Vector:深度剖析 STL 的核心机制与优化
96 7