爬虫入门之Scrapy框架实战(新浪百科豆瓣)(十二)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 一 新浪新闻爬取1 爬取新浪新闻(全站爬取)项目搭建与开启scrapy startproject sinacd sinascrapy genspider mysina http://roll.

一 新浪新闻爬取

1 爬取新浪新闻(全站爬取)

项目搭建与开启

scrapy startproject sina
cd sina
scrapy genspider mysina http://roll.news.sina.com.cn/news/gnxw/gdxw1/index_2.shtml

2 项目setting配置

ROBOTSTXT_OBEY = False
ITEM_PIPELINES = {
   'sina.pipelines.SinaPipeline': 300,
}

3 启动文件start.py配置

import scrapy.cmdline
def main():
    # -o  ['json', 'jsonlines', 'jl', 'csv', 'xml', 'marshal', 'pickle']
    scrapy.cmdline.execute(['scrapy','crawl','mysina'])

if __name__ == '__main__':
    main()

4 需求目标item配置

import scrapy

class SinaItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    newsTitle = scrapy.Field()
    newsUrl = scrapy.Field()
    newsTime = scrapy.Field()
    content = scrapy.Field()

5 爬虫逻辑文件配置mysina.py

import scrapy
import requests
from lxml import etree
from sina import items
from scrapy.spiders import CrawlSpider,Rule  #CrawlSpiders:定义了一些规则跟进link
from scrapy.linkextractors import LinkExtractor  #提取链接

class MysinaSpider(CrawlSpider): #继承了CrawlSpider因此parse需要重命名防止冲突
    name = 'mysina'
    allowed_domains = ['sina.com.cn']
    start_urls = ['http://roll.news.sina.com.cn/news/gnxw/gdxw1/index_2.shtml']
    '''
    Rule参数:link_extractor, callback=None, cb_kwargs=None, follow=None, process_links=None, process_request=identity
    LinkExtractor部分参数: allow=(), deny=(), allow_domains=(), deny_domains=(), restrict_xpaths=()

    allow=(正则)允许的, deny=(正则)不允许的
    callback=回调函数
    follow= 跟随如果为True就跟随
    '''
    rules = [Rule(LinkExtractor(allow=('index_(\d+).shtml')),callback='getParse',follow=True)]

    def getParse(self, response): #重命名逻辑方法
        newsList = response.xpath("//ul[@class='list_009']/li")
        for news in newsList:

            item = items.SinaItem() #对其进行实例化
            newsTitle = news.xpath('./a/text()')[0].extract()
            newsUrl = news.xpath('./a/@href')[0].extract()
            newsTime = news.xpath('./span/text()')[0].extract()
            content = self.getContent(newsUrl)

            item['newsTitle'] = newsTitle
            item['newsUrl'] = newsUrl
            item['newsTime'] = newsTime
            item['content'] = content
            yield item

    def getContent(self,url):
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.62 Safari/537.36"
        }
        response = requests.get(url,headers=headers).content.decode('utf-8','ignore')   #content二进制
        mytree = etree.HTML(response)
        contentList = mytree.xpath("//div[@class='article']//text()")
        print(contentList)
        content = ''
        for c in contentList:
            #Python strip() 方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列
            content += c.strip().replace('\n','')  #保证content为整片文章
        return content

方法二 :mysina.py也可采用scrapy创建请求

# -*- coding: utf-8 -*-
import scrapy
import requests
from lxml import etree
from sina import items

from scrapy.spiders import CrawlSpider,Rule  #CrawlSpiders:定义了一些规则跟进link
from scrapy.linkextractors import LinkExtractor  #提取链接

class MysinaSpider(CrawlSpider):
    name = 'mysina'
    allowed_domains = ['sina.com.cn']
    start_urls = ['http://roll.news.sina.com.cn/news/gnxw/gdxw1/index_2.shtml']
    rules = [Rule(LinkExtractor(allow=('index_(\d+).shtml')),callback='getParse',follow=True)]

    def getParse(self, response):

        newsList = response.xpath("//ul[@class='list_009']/li")
        for news in newsList:

            newsTitle = news.xpath('./a/text()')[0].extract()
            newsUrl = news.xpath('./a/@href')[0].extract()
            newsTime = news.xpath('./span/text()')[0].extract()

            #构造请求(修改为框架Request构造请求)
            request = scrapy.Request(newsUrl,callback=self.getMataContent) #回调为getMataContent
            #使用meta传参
            request.meta['newsTitle'] = newsTitle
            request.meta['newsUrl'] = newsUrl
            request.meta['newsTime'] = newsTime
            yield request

    def getMataContent(self,response):
        '''
        getMataContent接受来自request请求后的响应response
        '''
        contentList = response.xpath("//div[@class='article']//text()")
        content = ''
        for c in contentList:
            content += c.extract().strip()
        item = items.SinaItem()
        #response响应数据对应字段赋值给item
        item['newsTitle'] = response.meta['newsTitle']
        item['newsUrl'] = response.meta['newsUrl']
        item['newsTime'] = response.meta['newsTime']
        item['content'] = content
        yield item

6 管道存储pipelines.py

import pymysql

class SinaPipeline(object):
    def __init__(self):
        self.conn = None
        self.cursor = None

    def open_spider(self,spider):
        self.conn = pymysql.connect(host='111.230.169.xxx',user='root',password='xxx',database='sina', port=3306,charset='utf8') #创建连接
        self.cursor = self.conn.cursor()  #创建数据库游标

    def process_item(self, item, spider):
        sql = 'insert into sina_news(newsTitle,newsUrl,newsTime,content) VALUES (%r,%r,%r,%r)'%(item['newsTitle'], item['newsUrl'], item['newsTime'], item['content'])
        self.cursor.execute(sql)  #执行sql语句
        self.conn.commit()  #提交
        return item

    def close_spider(self,spider):
        self.cursor.close() #关闭
        self.conn.close()

方法二 : pipelines.py 补充快速创建sql语句

import pymysql

class DemoPipeline(object):

    def __init__(self):
        self.conn = None
        self.cur = None

    def open_spider(self, spider):
        self.conn = pymysql.connect(
            host='127.0.0.1',
            port=3306,
            user='root',
            password='123456',
            db='fate',
            charset='utf8')
        self.cur = self.conn.cursor()

    def process_item(self, item, spider):
        cols, values = zip(*item.items())  #zip打包返回两个参数
        sql = "INSERT INTO `%s` (%s) VALUES (%s)" % \
              (
                  'sina_news',
                  ','.join(cols),
                  ','.join(['%s'] * len(values))
               )
        self.cur.execute(sql, values) #执行sql语句并将values填充到%s
        self.conn.commit()
        return item

    def close_spider(self, spider):
        self.cur.close()
        self.conn.close()

二 百科资料的爬取

1 百科资料爬取

项目搭建与开启

scrapy startproject baike
cd baike
scrapy genspider mybaike baike.baidu.com/item/Python/407313

2 项目setting配置

ROBOTSTXT_OBEY = False
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
    "User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36"
}
ITEM_PIPELINES = {
   'baike.pipelines.BaikePipeline': 300,
}

3 启动文件start.py配置

import scrapy.cmdline
def main():
    # -o  ['json', 'jsonlines', 'jl', 'csv', 'xml', 'marshal', 'pickle']
    scrapy.cmdline.execute(['scrapy','crawl','mybaike'])

if __name__ == '__main__':
    main()

4 需求目标items配置

import scrapy

class BaikeItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    level1Title = scrapy.Field()
    level2Title = scrapy.Field()
    content = scrapy.Field()

5 爬虫逻辑文件配置mybaike.py

# -*- coding: utf-8 -*-
import scrapy
from scrapy.spiders import CrawlSpider,Rule
from scrapy.linkextractors import LinkExtractor
from baike.items import BaikeItem

class MybaikeSpider(CrawlSpider):
    name = 'mybaike'
    allowed_domains = ['baike.baidu.com']
    start_urls = ['https://baike.baidu.com/item/Python/407313']

    rules = [Rule(LinkExtractor(allow=('item/(.*)')),callback='getParse',follow=True)]

    def getParse(self, response):
        level1Title = response.xpath("//dd[@class='lemmaWgt-lemmaTitle-title']/h1/text()")[0].extract()
        level2Title = response.xpath("//dd[@class='lemmaWgt-lemmaTitle-title']/h2/text()")
        if len(level2Title) != 0:
            level2Title = level2Title[0].extract()
        else:
            level2Title = '待编辑'
        contentList = response.xpath("//div[@class='lemma-summary']//text()")
        content = ''
        for c in contentList:
            content += c.extract()
        item = BaikeItem()
        item['level1Title'] = level1Title
        item['level2Title'] = level2Title
        item['content'] = content
        yield item

6 管道存储pipelines.py

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymysql

class BaikePipeline(object):
    def __init__(self):
        self.conn = None
        self.cousor = None

    def open_spider(self, spider):
        # 连接
        self.conn = pymysql.connect(host='111.230.169.107', user='root', password="20111673",
                                    database='baike', port=3306,
                                    charset='utf8')
        # 游标
        self.cousor = self.conn.cursor()

    def process_item(self, item, spider):

        cols, values = zip(*item.items())

        # `表名`
        sql = "INSERT INTO `%s`(%s) VALUES (%s)" % \
              ('baike', ','.join(cols), ','.join(['%s'] * len(values)))

        self.cousor.execute(sql, values)
        self.conn.commit()

        return item

    def close_spider(self, spider):
        self.cousor.close()
        self.conn.close()

三 豆瓣电影的爬取

1 豆瓣电影排行版

项目搭建与开启

scrapy startproject douban
cd douban
scrapy genspider mysina movie.douban.com/top250

2 项目setting配置

ROBOTSTXT_OBEY = False
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
   "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.62 Safari/537.36"
}
ITEM_PIPELINES = {
   'douban.pipelines.DoubanPipeline': 300,
}

3 启动文件start.py配置

import scrapy.cmdline
def main():
    # -o  ['json', 'jsonlines', 'jl', 'csv', 'xml', 'marshal', 'pickle']
    scrapy.cmdline.execute(['scrapy','crawl','mybaike'])

if __name__ == '__main__':
    main()

4 需求目标items配置

import scrapy

class DoubanItem(scrapy.Item):
    # define the fields for your item here like:
    name = scrapy.Field()
    movieInfo = scrapy.Field()
    star = scrapy.Field()
    quote = scrapy.Field()

5 爬虫逻辑文件配置mydouban.py

# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request
from douban.items import DoubanItem

class MydoubanSpider(scrapy.Spider):
    name = 'mydouban'
    url = ['https://movie.douban.com/top250']
    start_urls = {'https://movie.douban.com/top250'} #方法1

    '''#方法二
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36',
    }

    def start_requests(self):
        url = 'https://movie.douban.com/top250'
        yield Request(url, headers=self.headers)
    '''

    def parse(self, response):
        item = DoubanItem()
        movies = response.xpath('//ol[@class="grid_view"]/li')

        for movie in movies:
            item['name'] = movie.xpath(".//div[@class='pic']/a/img/@alt").extract()[0]
            item['movieInfo'] = movie.xpath(".//div[@class='info']/div[@class='bd']/p/text()").extract()[0].strip()
            item['star'] = movie.xpath(".//div[@class='info']/div[@class='bd']/div[@class='star']/span[2]/text()").extract()[0]
            item['quote'] = movie.xpath('.//div[@class="star"]/span/text()').re(r'(\d+)人评价')[0]
            yield item

        next_url = response.xpath('//span[@class="next"]/a/@href').extract() #获取下一页链接
        if next_url:
            next_url = 'https://movie.douban.com/top250' + next_url[0]
            yield Request(next_url,callback=self.parse)  #执行回调

6 管道存储pipelines.py

# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html

import pymysql

class DoubanPipeline(object):
    def __init__(self):
        self.conn = pymysql.connect(host='111.230.169.107', port=3306, user= 'root', passwd = 'xxx', database = 'douban',charset = 'utf8')
        self.cursor = self.conn.cursor()
        self.cursor.execute("truncate table Movie")   #此处设置每开启就清空
        self.conn.commit()

    def process_item(self, item, spider):
        try:
            self.cursor.execute("insert into Movie (name,movieInfo,star,quote) VALUES (%s,%s,%s,%s)",(item['name'], item['movieInfo'], item['star'], item['quote']))
            self.conn.commit()

        except pymysql.Error:
            print("Error%s,%s,%s,%s" % (item['name'], item['movieInfo'], item['star'], item['quote']))
        return item
    def close_spider(self, spider):
        self.cursor.close()
        self.conn.close()
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
24 6
|
4天前
|
数据采集 Web App开发 前端开发
Python爬虫进阶:Selenium在动态网页抓取中的实战
【10月更文挑战第26天】动态网页抓取是网络爬虫的难点,因为数据通常通过JavaScript异步加载。Selenium通过模拟浏览器行为,可以加载和执行JavaScript,从而获取动态网页的完整内容。本文通过实战案例,介绍如何使用Selenium在Python中抓取动态网页。首先安装Selenium库和浏览器驱动,然后通过示例代码展示如何抓取英国国家美术馆的图片信息。
24 6
|
4天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
21 4
|
3天前
|
数据采集 中间件 API
在Scrapy爬虫中应用Crawlera进行反爬虫策略
在Scrapy爬虫中应用Crawlera进行反爬虫策略
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
157 4
|
3月前
|
数据采集 存储 搜索推荐
打造个性化网页爬虫:从零开始的Python教程
【8月更文挑战第31天】在数字信息的海洋中,网页爬虫是一艘能够自动搜集网络数据的神奇船只。本文将引导你启航,用Python语言建造属于你自己的网页爬虫。我们将一起探索如何从无到有,一步步构建一个能够抓取、解析并存储网页数据的基础爬虫。文章不仅分享代码,更带你理解背后的逻辑,让你能在遇到问题时自行找到解决方案。无论你是编程新手还是有一定基础的开发者,这篇文章都会为你打开一扇通往数据世界的新窗。
|
4月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
【7月更文挑战第31天】在网络数据的海洋中,使用Python的`requests`库构建网络爬虫就像探索未知的航船。HTTP协议指导爬虫与服务器交流,收集信息。HTTP请求包括请求行、头和体,响应则含状态行、头和体。`requests`简化了发送各种HTTP请求的过程。
80 4
|
1月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
158 66
|
1天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
27天前
|
数据采集 JavaScript 前端开发
JavaScript逆向爬虫——使用Python模拟执行JavaScript
JavaScript逆向爬虫——使用Python模拟执行JavaScript