吴恩达《机器学习》课程总结(12)支持向量机

简介: 12.1目标优化(1)以下是逻辑回归以及单个样本的代价函数(2)首先将使用上图中紫色的线(称为cost1或者cost0)的代替曲线,然后将样本数m去掉,最后将C代替1/λ(可以这么理解,但不完全是),从而实现逻辑回归的代价函数到SVM的转换。

12.1目标优化

(1)以下是逻辑回归以及单个样本的代价函数

(2)首先将使用上图中紫色的线(称为cost1或者cost0)的代替曲线,然后将样本数m去掉,最后将C代替1/λ(可以这么理解,但不完全是),从而实现逻辑回归的代价函数到SVM的转换。

(3)SVM的输出将不再是逻辑回归的概率,而就是0或者1:

12.2大边界的直观理解

(1)首先对z的要求更加严格了,在逻辑回归中只要求大于或小于零,,这里将会是大于等于1或小于等于-1。

(2)假设C非常大时,我们的优化会尽量时第一项为零,假设可以得到这样的参数,那么就可以将代价函数转换为:

即在后面的约束下求解前面的最小值。

(3)C非常大时(即λ非常小),会尽量去满足上面的约束,这样会导致对异常点非常敏感(过拟合),如下所示:

这时将会得到紫色的线,如果将C适当减小,会得到满意的黑色线的。即C不那么大时,可以忽略掉一些异常点。

(3)支持向量机经常被称为最大间距分类器,在C很大时确实如此,但C不是那么大时,将不是,如上一点的例子所示。但是这么理解是有助于理解SVM的。

(4)C较大相当于λ较小,会出现过拟合;反之则出现欠拟合。

12.3数学背后的最大边界分类(选修)

(1)向量的内积:一个向量投影到另一个向量投影长度与向量的范数的乘积,也就是对应坐标相乘再相加。

(2)目标函数要使得θ尽可能小,这时只要使得x在θ上的投影尽可能的大,就能够在θ取越小的值时满足约束条件,这就是SVM背后的数学原理。

(3)θ和边界呈现90°垂直,另外θ0为零时边界通过原点,反之不通过原点。

12.4核函数1

(1)如果直接用多项式取拟合下面的边界的话,肯能需要多项式的次数很高,特征很多。

(2)利用x的各个特征与我们预先选定地标(landmark)l(1),l(2),l(3),的近似程度选取新的特征f1,f2,f3。

上面是一个高斯核函数,注:这个函数与正态分布没什么实际上的关系,只是看上去像而已。

(3)与地标越近结果f越接近1,越远f越接近0。

(3)通过一下式子将很容易进行分类:

(4)核函数计算的结果即为新的特征。

12.5核函数2

(1)地标的个数设置为样本数m,即每个样本的位置即为地标的位置:

(2)将核函数运用到支持向量机中,

给定x,计算新特征f,当θTf>0时,预测y=1,否则反之。

相应的修改代价函数为:

在具体实施过程中,还需要对最后的正则化想微调,在计算时,用θTMθ代替θTθ。M跟选择的核函数有关,用相关库几块使用带核函数的SVM。

不带核函数的SVM称为线性核函数。

(3)以下是支持向量机的两个参数C和σ的影响:

C=1/λ;

C较大时,相当于λ较小,可能会导致过拟合,高方差;

C较小时,相当于λ较大,可能会导致欠拟合,高偏差;

σ较大时,可能会导致低方差,高偏差。

σ较小时,可能会导致低偏差,高方差。 

12.6使用支持向量机

(1)尽管不需要自己去写SVM函数,直接使用相关库,但需要做一下几件事:

1.是提出参数C的选择。在之前视频中已经讨论了C对方差偏差的影响。

2.选择内核参数或你想要使用的相似函数。

(2)以下是逻辑回归和支持向量机的选择:

1.相比于样本数m,特征数n大的多的时候,没有那么多数据量去训练一个非常复杂的模型,这时考虑用SVM。

2.如果n较小,而且m大小中等,例如n在1-1000之间,而m在10-1000之间,使用高斯函数的支持向量机。

3.如果n较小,而m较大,例如n在1-1000之间,而m大于50000,则使用支持向量机会非常慢,解决方案是创造增加更多的特征,然后使用逻辑回归或不带核函数的支持向量机。

神经网络在以上三种情况下都可以有较好的表现,但神经网络训练可能非常慢,选择支持向量机的原因主要在于它的代价函数是凸函数,不存在局部最小值。

相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
152 1
|
8月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第27天】在数据科学和人工智能的领域中,支持向量机(SVM)是一种强大的监督学习模型,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将详细介绍SVM的工作原理、核心概念以及如何在实际问题中应用该算法进行分类和回归分析。我们还将讨论SVM面临的挑战以及如何通过调整参数和核技巧来优化模型性能。
|
5月前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
48 1
|
5月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
93 3
|
5月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
219 2
|
5月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
73 1
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 吴恩达:机器学习的六个核心算法!
吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
128 1
算法金 | 吴恩达:机器学习的六个核心算法!
|
8月前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
8月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第6天】在数据科学和人工智能的广阔天地中,支持向量机(SVM)以其强大的分类能力与理论深度成为机器学习领域中的一个闪亮的星。本文将深入探讨SVM的核心原理、关键特性以及实际应用案例,为读者提供一个清晰的视角来理解这一高级算法,并展示如何利用SVM解决实际问题。
205 7
|
7月前
|
机器学习/深度学习 算法 Windows
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机