要点
近日,国务院印发《新一代人工智能发展规划》(以下简称《规划》),提出了面向2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国。《规划》指出,要开展跨学科探索性研究,推动人工智能与量子科学等相关基础学科的交叉融合,加快人工智能的发展。
《规划》提出,要布局前沿基础理论研究。针对可能引发人工智能范式变革的方向,前瞻布局高级机器学习、类脑智能计算、量子智能计算等跨领域基础理论研究。量子智能计算理论重点突破量子加速的机器学习方法,建立高性能计算与量子算法混合模型,形成高效精确自主的量子人工智能系统架构。
同时,开展跨学科探索性研究。推动人工智能与神经科学、认知科学、量子科学、心理学、数学、经济学、社会学等相关基础学科的交叉融合,加强引领人工智能算法、模型发展的数学基础理论研究,重视人工智能法律伦理的基础理论问题研究,支持原创性强、非共识的探索性研究,鼓励科学家自由探索,勇于攻克人工智能前沿科学难题,提出更多原创理论,作出更多原创发现。
在量子智能计算理论方面,探索脑认知的量子模式与内在机制,研究高效的量子智能模型和算法、高性能高比特的量子人工智能处理器、可与外界环境交互信息的实时量子人工智能系统等。
此外,《规划》强调,要针对我国人工智能发展的迫切需求和薄弱环节,设立新一代人工智能重大科技项目。加强整体统筹,明确任务边界和研发重点,形成以新一代人工智能重大科技项目为核心、现有研发布局为支撑的“1+N”人工智能项目群。加强与其他“科技创新2030—重大项目”的相互支撑,加快脑科学与类脑计算、量子信息与量子计算、智能制造与机器人、大数据等研究,为人工智能重大技术突破提供支撑。
当智商超群的人工智能
邂逅运算超凡的量子计算,
将碰撞出带来怎样的改变?
跟着小编一起来看看。
1
人工智能将进入量子计算时代
人工智能的发展可能存在三个阶段:服务器时代、云计算时代、量子计算时代。
现阶段人工智能基本只能依靠集中处理的方式实现相关功能和应用,也就是通过云计算的方式。量子计算有望给人工智能带来的变革性变化在于小型化和移动化。当量子芯片中的量子比特数量达到一定数量后,计算能力将满足人工智能对运算能力的需求,人工智能将不再依赖于大型服务器集群。未来量子芯片小型化后,人工智能前端系统的快速实时处理便成为可能,比如车载智能系统、无人机智能系统等。
量子计算发展历史
2
量子人工智能算法
相比经典算法节省大量时间
经典计算机的计算核心使用的是中央处理器,是一种基于半导体理论设计的电子芯片,用于串行运算。而在量子计算机中,它的计算核心是量子芯片,通过量子的叠加性带来了并行运算的能力,替代传统的电子芯片。可以看到,量子计算机与经典计算机的物理实现完全不同,如果在量子计算机中使用经典算法的话,那么量子芯片将和普通电子芯片发挥基本相同的功能,只能实现串行计算。这是由于设计经典算法时,其设计思想是基于串行运算而得到的,这是经典算法自身的局限性。为此,需要设计相应的量子人工智能算法,才能实现量子计算的超强算力,这种专门面向量子计算设计的人工智能算法被称为量子人工智能算法。
3
量子计算提升人工智能效率
拓展应用场景
在很多应用领域,人工智能需要拥有快速处理数据、快速响应的能力。比如智能驾驶等应用场景,对于人工智能的反应速度要求很高。再比如手机上的人工智能系统,对于数据的处理能力要求非常高,在这些应用场景中,急需人工智能的硬件系统实现可移动化和快速响应能力。
在摩尔定律近乎失效的情况下,基于现有的计算能力,在如此庞大的数据面前,人工智能的训练学习过程将变得无比漫长,甚至完全无法实现最基本的功能。而量子计算机的量子比特数量以指数形式增长,也就是每两年翻一番。又因为量子计算的特点,其计算能力是量子比特数量的指数级,这个增长速度将远远大于数据量的增长,为数据爆发时代的人工智能带来了强大的硬件基础。
量子计算时代为人工智能带来的颠覆,除了在计算能力方面,更重要的是极大地增加了应用场景。
4
量子计算
可实现人工智能的小型化
现在的人工智能系统使用的是成百上千个GPU来提升计算能力,这使得处理学习或者智能的能力得到比较大地增强,然而这套系统也需要庞大的硬件机柜和相配套的硬件机房。较大型的人工智能硬件系统需要将近半个足球场的占地空间,这无疑是对人工智能发展的一个重要限制。随着大数据时代的不断进步,数据将呈现指数级增长,而基于CPU或者GPU云计算的数据中心将无法满足数据爆发的需求。
目前非通用型量子计算机已经实现了1000位量子比特,在特定算法上,计算效率比经典计算机要快一亿倍。也就是如果想要实现人工智能,原来需要一千台计算机,或者需要一万台计算机的规模,现在只要用一台量子计算机就可以了。而且这个量子计算机的计算能力完全能够满足人工智能对速度的要求,也就是人工智能将不再依赖于大型服务器集群,或者庞大的云计算中心。
5
量子计算可高速处理大数据
实现人工智能移动化
目前量子计算较为成功的应用集中在大数据快速搜索,这主要是因为在这个应用领域中,诞生了优秀的量子计算算法,使得经典计算体系中无解或者趋近无解的问题,在量子计算的环境中,转化为了可解并且能快速求解的状态,使得这个领域成为目前量子计算的重要应用方向。
量子芯片的大数据处理能力将实现人工智能的移动化,主要的应用场景包括:车载智能系统、无人机的智能系统或者手机上的人工智能系统。总之,这些应用场景对于数据处理能力的要求非常高,而量子计算通过节省大量的计算时间,实现可移动化的人工智能系统,提供数据的快速响应能力。
原文发布时间为:2017-03-23
本文作者:彭承志
本文来源:九州量子,如需转载请联系原作者。