Net和Java基于zipkin的全链路追踪

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

  在各大厂分布式链路跟踪系统架构对比 中已经介绍了几大框架的对比,如果想用免费的可以用zipkin和pinpoint还有一个忘了介绍:SkyWalking,具体介绍可参考:https://github.com/apache/incubator-skywalking/blob/master/README_ZH.md

  由于追踪的要求是Net平台和Java平台都要支持,对于java平台各组件都是天生的支持的,但对于net的支持找了些开源组件,发现Pinpoint和SkyWalking给出的Demo都是基于NetCore(SkyWalking可以在github上搜skywalking-netcore,Pinpoint没有好的推荐),版本要求比较高,但不可能更改现有平台的FW框架,Zipkin有开源项目 Medidata.zipkinTracerModule 、zipkin.net、zipkin-csharp,网上依次推荐是从前到后,经过测试发现Medidata.zipkinTracerModule、zipkin.net也是用于Net Core的,在NuGet上安装报错。最后测试zipkin-csharp(https://github.com/openzipkin-attic/zipkin-csharp)可以成功,在NuGet中搜索Zipkin.Core,现在版本也只有一个,如下:

然后查看给出的demo中代码:zipkin-csharp/examples/ZipkinExample/Program.cs

using System;
using System.Net;
using System.Threading;
using Zipkin;
using Zipkin.Tracer.Kafka;

namespace ZipkinExample
{
    class Program
    {
        static void Main(string[] args)
        {
            var random = new Random();
            // make sure Zipkin with Scribe client is working
            //var collector = new HttpCollector(new Uri("http://localhost:9411/"));
            var collector = new KafkaCollector(KafkaSettings.Default);
            var traceId = new TraceHeader(traceId: (ulong)random.Next(), spanId: (ulong)random.Next());
            var span = new Span(traceId, new IPEndPoint(IPAddress.Loopback, 9000), "test-service");
            span.Record(Annotations.ClientSend(DateTime.UtcNow));
            Thread.Sleep(100);
            span.Record(Annotations.ServerReceive(DateTime.UtcNow));
            Thread.Sleep(100);
            span.Record(Annotations.ServerSend(DateTime.UtcNow));
            Thread.Sleep(100);
            span.Record(Annotations.ClientReceive(DateTime.UtcNow));

            collector.CollectAsync(span).Wait();
        }
    }
}

  可以看出这里的traceId和spanId都是随机生成的,在这里推荐自己生成ID,注意是ulong型,这里毫秒数只格式化两位(数据库的位数20位,会超),也可以用更保险的其它方法。

 /// <summary>
        /// 获得随机数
        /// </summary>
        /// <returns></returns>
        private static ulong getRandom()
        {
            var random = new Random();
            return ulong.Parse(DateTime.Now.ToString("yyyyMMddHHmmssff") + random.Next(100, 999));
        }
    }

  collector这里使用Http来接收,注释kafka的,放开http的。去掉 collector.CollectAsync(span).Wait(); 中的Wait。

Zipkin的几个基本概念
Span:基本工作单元,一次链路调用(可以是RPC,DB等没有特定的限制)创建一个span,通过一个64位ID标识它, span通过还有其他的数据,例如描述信息,时间戳,key-value对的(Annotation)tag信息,parent-id等,其中parent-id 可以表示span调用链路来源,通俗的理解span就是一次请求信息
Trace:类似于树结构的Span集合,表示一条调用链路,存在唯一标识,即TraceId
Annotation:注解,用来记录请求特定事件相关信息(例如时间),通常包含四个注解信息
cs - Client Start,表示客户端发起请求
sr - Server Receive,表示服务端收到请求
ss - Server Send,表示服务端完成处理,并将结果发送给客户端
cr - Client Received,表示客户端获取到服务端返回信息
BinaryAnnotation:提供一些额外信息,一般以key-value对出现

 

启动服务端测试

下载 https://github.com/openzipkin/zipkin/releases 最近的稳定版 release-2.7.1的jar包,这里采用mysql的型式保存记录,因此需要创建数据库zipkin,创建表:

SET FOREIGN_KEY_CHECKS=0;

-- ----------------------------
-- Table structure for `zipkin_annotations`
-- ----------------------------
DROP TABLE IF EXISTS `zipkin_annotations`;
CREATE TABLE `zipkin_annotations` (
  `trace_id_high` bigint(20) NOT NULL DEFAULT '0' COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
  `trace_id` bigint(20) NOT NULL COMMENT 'coincides with zipkin_spans.trace_id',
  `span_id` bigint(20) NOT NULL COMMENT 'coincides with zipkin_spans.id',
  `a_key` varchar(255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1',
  `a_value` blob COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB',
  `a_type` int(11) NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation',
  `a_timestamp` bigint(20) DEFAULT NULL COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp',
  `endpoint_ipv4` int(11) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null',
  `endpoint_ipv6` binary(16) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null, or no IPv6 address',
  `endpoint_port` smallint(6) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null',
  `endpoint_service_name` varchar(255) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null',
  UNIQUE KEY `trace_id_high` (`trace_id_high`,`trace_id`,`span_id`,`a_key`,`a_timestamp`) COMMENT 'Ignore insert on duplicate',
  UNIQUE KEY `trace_id_high_4` (`trace_id_high`,`trace_id`,`span_id`,`a_key`,`a_timestamp`) COMMENT 'Ignore insert on duplicate',
  KEY `trace_id_high_2` (`trace_id_high`,`trace_id`,`span_id`) COMMENT 'for joining with zipkin_spans',
  KEY `trace_id_high_3` (`trace_id_high`,`trace_id`) COMMENT 'for getTraces/ByIds',
  KEY `endpoint_service_name` (`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames',
  KEY `a_type` (`a_type`) COMMENT 'for getTraces',
  KEY `a_key` (`a_key`) COMMENT 'for getTraces',
  KEY `trace_id` (`trace_id`,`span_id`,`a_key`) COMMENT 'for dependencies job',
  KEY `trace_id_high_5` (`trace_id_high`,`trace_id`,`span_id`) COMMENT 'for joining with zipkin_spans',
  KEY `trace_id_high_6` (`trace_id_high`,`trace_id`) COMMENT 'for getTraces/ByIds',
  KEY `endpoint_service_name_2` (`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames',
  KEY `a_type_2` (`a_type`) COMMENT 'for getTraces',
  KEY `a_key_2` (`a_key`) COMMENT 'for getTraces',
  KEY `trace_id_2` (`trace_id`,`span_id`,`a_key`) COMMENT 'for dependencies job'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPRESSED;

-- ----------------------------
-- Records of zipkin_annotations
-- ----------------------------

-- ----------------------------
-- Table structure for `zipkin_dependencies`
-- ----------------------------
DROP TABLE IF EXISTS `zipkin_dependencies`;
CREATE TABLE `zipkin_dependencies` (
  `day` date NOT NULL,
  `parent` varchar(255) NOT NULL,
  `child` varchar(255) NOT NULL,
  `call_count` bigint(20) DEFAULT NULL,
  `error_count` bigint(20) DEFAULT NULL,
  UNIQUE KEY `day` (`day`,`parent`,`child`),
  UNIQUE KEY `day_2` (`day`,`parent`,`child`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPRESSED;

-- ----------------------------
-- Records of zipkin_dependencies
-- ----------------------------

-- ----------------------------
-- Table structure for `zipkin_spans`
-- ----------------------------
DROP TABLE IF EXISTS `zipkin_spans`;
CREATE TABLE `zipkin_spans` (
  `trace_id_high` bigint(20) NOT NULL DEFAULT '0' COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
  `trace_id` bigint(20) NOT NULL,
  `id` bigint(20) NOT NULL,
  `name` varchar(255) NOT NULL,
  `parent_id` bigint(20) DEFAULT NULL,
  `debug` bit(1) DEFAULT NULL,
  `start_ts` bigint(20) DEFAULT NULL COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL',
  `duration` bigint(20) DEFAULT NULL COMMENT 'Span.duration(): micros used for minDuration and maxDuration query',
  UNIQUE KEY `trace_id_high` (`trace_id_high`,`trace_id`,`id`) COMMENT 'ignore insert on duplicate',
  UNIQUE KEY `trace_id_high_4` (`trace_id_high`,`trace_id`,`id`) COMMENT 'ignore insert on duplicate',
  KEY `trace_id_high_2` (`trace_id_high`,`trace_id`,`id`) COMMENT 'for joining with zipkin_annotations',
  KEY `trace_id_high_3` (`trace_id_high`,`trace_id`) COMMENT 'for getTracesByIds',
  KEY `name` (`name`) COMMENT 'for getTraces and getSpanNames',
  KEY `start_ts` (`start_ts`) COMMENT 'for getTraces ordering and range',
  KEY `trace_id_high_5` (`trace_id_high`,`trace_id`,`id`) COMMENT 'for joining with zipkin_annotations',
  KEY `trace_id_high_6` (`trace_id_high`,`trace_id`) COMMENT 'for getTracesByIds',
  KEY `name_2` (`name`) COMMENT 'for getTraces and getSpanNames',
  KEY `start_ts_2` (`start_ts`) COMMENT 'for getTraces ordering and range'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPRESSED;

-- ----------------------------
-- Records of zipkin_spans
-- ----------------------------

启动

进入程序的当前目录启动,注意参数内容,如果想要保存到elasticsearch,需要按官方文档更改。

java -jar zipkin-server-2.7.1.jar --STORAGE_TYPE=mysql --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=123456 --MYSQL_HOST=localhost --MYSQL_TCP_PORT=3306

启动后看到如下内容表明成功。

启动成功后浏览器访问 http://localhost:9411/

  至此服务端和展示页面已经启动,不过功能还是很简单的,具体的使用可另行查询资料。

   这里用来测试的服务采用网友提供的 源码:mircoservice分布式跟踪系统(zipkin+springboot) https://github.com/dreamerkr/mircoservice,文章可参考:微服务之分布式跟踪系统(springboot+zipkin)https://blog.csdn.net/qq_21387171/article/details/53787019

用默认配置分别运行4个客户端服务后运行效果:

 (1)分别启动每个服务,然后访问服务1,浏览器访问(http://localhost:8081/service1/test

(2)输入zipkin地址,每次trace的列表

 点击其中的trace,可以看trace的树形结构,包括每个服务所消耗的时间:

 点击每个span可以获取延迟信息:

 同时可以查看服务之间的依赖关系:

测试Net平台程序

将demo代码改为:

static void Main(string[] args)
        {
            var random = new Random();
            // make sure Zipkin with Scribe client is working
            var collector = new HttpCollector(new Uri("http://localhost:9411/"));
            //var collector = new KafkaCollector(KafkaSettings.Default);
            var traceId = new TraceHeader(traceId: (ulong)random.Next(), spanId: (ulong)random.Next());
            var span = new Span(traceId, new IPEndPoint(IPAddress.Loopback, 9000), "zipkinweb");
            span.Record(Annotations.ClientSend(DateTime.UtcNow));
            Thread.Sleep(100);
            span.Record(Annotations.ServerReceive(DateTime.UtcNow));
            Thread.Sleep(100);
            span.Record(Annotations.ServerSend(DateTime.UtcNow));
            Thread.Sleep(100);
            span.Record(Annotations.ClientReceive(DateTime.UtcNow));

            collector.CollectAsync(span);
        }

然后运行一次再查看,会多出一条信息

点进去会看到请求的详细信息和备注信息:

右上角查看json

  验证了NET平台下是可以成功调用的,而且可以看到zipkin服务前端展示是通过api请求的,前后台分开的,因此我们可以以此来做二次开发,我们知道了数据结构或者通过自己请求数据库内容做更复杂的业务前端。

  这里强调一点的是net最好用framework4.5以上的版本,由net的demo来看其实封装性不高,所以灵活性能很高,需要自己进一步封装才能达到代码的侵入性更少,性能更高。后面考虑到性能和数据量可改用kafka接收和ES保存数据。

相关实践学习
基于OpenTelemetry构建全链路追踪与监控
本实验将带领您快速上手可观测链路OpenTelemetry版,包括部署并接入多语言应用、体验TraceId自动注入至日志以实现调用链与日志的关联查询、以及切换调用链透传协议以满足全链路打通的需求。
分布式链路追踪Skywalking
Skywalking是一个基于分布式跟踪的应用程序性能监控系统,用于从服务和云原生等基础设施中收集、分析、聚合以及可视化数据,提供了一种简便的方式来清晰地观测分布式系统,具有分布式追踪、性能指标分析、应用和服务依赖分析等功能。 分布式追踪系统发展很快,种类繁多,给我们带来很大的方便。但在数据采集过程中,有时需要侵入用户代码,并且不同系统的 API 并不兼容,这就导致了如果希望切换追踪系统,往往会带来较大改动。OpenTracing为了解决不同的分布式追踪系统 API 不兼容的问题,诞生了 OpenTracing 规范。OpenTracing 是一个轻量级的标准化层,它位于应用程序/类库和追踪或日志分析程序之间。Skywalking基于OpenTracing规范开发,具有性能好,支持多语言探针,无侵入性等优势,可以帮助我们准确快速的定位到线上故障和性能瓶颈。 在本套课程中,我们将全面的讲解Skywalking相关的知识。从APM系统、分布式调用链等基础概念的学习加深对Skywalking的理解,从0开始搭建一套完整的Skywalking环境,学会对各类应用进行监控,学习Skywalking常用插件。Skywalking原理章节中,将会对Skywalking使用的agent探针技术进行深度剖析,除此之外还会对OpenTracing规范作整体上的介绍。通过对本套课程的学习,不止能学会如何使用Skywalking,还将对其底层原理和分布式架构有更深的理解。本课程由黑马程序员提供。
目录
相关文章
|
5月前
|
监控 数据可视化 Java
【JAVA】分布式链路追踪技术概论
【JAVA】分布式链路追踪技术概论
72 2
|
6月前
|
Java C# 开发者
【干货】Java开发者快速上手.NET指南
【干货】Java开发者快速上手.NET指南
|
6月前
|
Dubbo Java 应用服务中间件
微服务框架(十六)Spring Boot及Dubbo zipkin 链路追踪组件埋点
此系列文章将会描述Java框架Spring Boot、服务治理框架Dubbo、应用容器引擎Docker,及使用Spring Boot集成Dubbo、Mybatis等开源框架,其中穿插着Spring Boot中日志切面等技术的实现,然后通过gitlab-CI以持续集成为Docker镜像。 本文第一部分为调用链、OpenTracing、Zipkin和Jeager的简述;第二部分为Spring Boot及Dubbo zipkin 链路追踪组件埋点
|
8天前
|
存储 NoSQL 关系型数据库
微服务Zipkin链路追踪原理,图解版,一文吃透!
本文重点讲解Zipkin链路追踪的原理与使用,帮助解决微服务架构下的服务响应延迟等问题,提升系统性能与稳定性。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
微服务Zipkin链路追踪原理,图解版,一文吃透!
|
3月前
|
数据可视化 Java Nacos
Sleuth+Zipkin 实现 SpringCloud 链路追踪
【8月更文挑战第9天】Sleuth+Zipkin 实现 SpringCloud 链路追踪
89 1
Sleuth+Zipkin 实现 SpringCloud 链路追踪
|
4月前
|
开发框架 安全 Java
.net和java有什么样的区别?
Java和.NET在本质、编程语言、生态系统与工具、跨平台性、应用领域、性能与效率以及安全性与可靠性等方面都存在明显的区别。选择哪个平台取决于具体的需求、技术栈和目标平台。
292 7
|
4月前
|
存储 监控 Java
zipkin 与 sleuth 实现链路追踪
zipkin 与 sleuth 实现链路追踪
69 0
|
5月前
|
Java C# 数据安全/隐私保护
|
5月前
|
存储 消息中间件 Java
【分布式链路追踪技术】sleuth+zipkin
【分布式链路追踪技术】sleuth+zipkin
68 2
|
6月前
|
监控 数据可视化 Java
【JAVA】分布式链路追踪技术概论
skywalking拥有更加的强大和细粒度的图形监控界面。
95 2