5 Reasons Why You Should Try Kibana

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: Kibana offers its users several powerful and convenient development tools along with time series data, query data map analysis, and geographic location analysis.

There are many tools in the market that facilitate data visualization and exploration. I had the opportunity to personally try several of these tools for my projects. Out of all these tools, I found Kibana to be the most pleasing and convenient to use. I have used Kibana together with ElasticSearch. You can easily set up your own Elastic (ELK) stack on Alibaba Cloud Container Service.

In this blog, I will share with you five features, which I believe is the differentiator between Kibana and other similar tools. Read on to learn about the five features of Kibana that you should know.

1. Log Data Visualization Tool

Alibaba Cloud has integrated Kibana with ElasticSearch, which allows users to easily use Kibana to check, analyze, and store the data in ElasticSearch. Kibana includes several classic features like bar, line, pie, and ring charts, allowing users to make full use of ElasticSearch’s aggregation functionality. Furthermore, the Dashboard functions can compile a variety of visual components into a large screen. As we can see from the below figure, Kibana can perform statistical analysis on access logs for network applications.

1

2. Powerful and Convenient Development Tools

With Kibana’s development tools, you can skip entering commands in the terminal and jump straight to processing the ElasticSearch data. Compared to similar kinds of open source software, Search Profiler makes it easier to check the amount of time taken for search requests. Furthermore, creating a complicated Grok pattern in Logstash settings makes using Grok Debugger much simpler. The below figure shows the functionality available in Search Profiler.

2

3. Time Series Data Query

You can use Timelion to perform advanced chronological analysis on your ElasticSearch data. Additionally, you can also use powerful and simple functions to expressively describe, search, transform, and visualize data.

3

4. Data Map Analysis

A single line in a graph could be related to thousands or even tens of thousands of documents, such as transactions between two bank accounts. Kibana lets you look at these relationships intuitively. You can use any of the data maps, timelines, pie charts, or original document visualizations to retrieve more detailed information. You can click on a graph made up of networked entities and interact with the image to check the strength of a relationship. Moreover, you can even customize colors and image shapes.

4

5. Geographic Location Analysis

Kibana can visualize special geographic data or use Elastic Maps Service to allow you to achieve custom visualization of locational data.

5

Conclusion

In this article, I shared five features of Kibana, along with several images that illustrate its capabilities and offerings. I strongly believe that with features such as data map analysis, time series data query, and powerful and convenient tools make it the best data visualization tool out there! Check out the Alibaba Cloud Container Service and build your own Elastic (ELK) stack today!

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
目录
相关文章
|
机器学习/深度学习 人工智能 算法
机器学习-线性模型(波士顿房价预测)
机器学习-线性模型(波士顿房价预测)
|
存储 开发工具 git
【软考学习16】用位示图法,轻松解决空闲存储空间的管理难题
【软考学习16】用位示图法,轻松解决空闲存储空间的管理难题
893 0
|
9月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
249 2
|
存储 缓存 Java
什么是线程池?从底层源码入手,深度解析线程池的工作原理
本文从底层源码入手,深度解析ThreadPoolExecutor底层源码,包括其核心字段、内部类和重要方法,另外对Executors工具类下的四种自带线程池源码进行解释。 阅读本文后,可以对线程池的工作原理、七大参数、生命周期、拒绝策略等内容拥有更深入的认识。
1673 31
什么是线程池?从底层源码入手,深度解析线程池的工作原理
|
数据采集 Java Python
如何用Python同时抓取多个网页:深入ThreadPoolExecutor
在信息化时代,实时数据的获取对体育赛事爱好者、数据分析师和投注行业至关重要。本文介绍了如何使用Python的`ThreadPoolExecutor`结合代理IP和请求头设置,高效稳定地抓取五大足球联赛的实时比赛信息。通过多线程并发处理,解决了抓取效率低、请求限制等问题,提供了详细的代码示例和解析方法。
342 0
如何用Python同时抓取多个网页:深入ThreadPoolExecutor
|
Prometheus Cloud Native Java
OpenTelemetry: 经得起考验的工具
OpenTelemetry: 经得起考验的工具
1236 2
|
Python
ZSH、oh-my-zsh安装教程及插件和主题推荐
ZSH、oh-my-zsh安装教程及插件和主题推荐
2354 0
|
Android开发
Android官方下拉刷新控件SwipeRefreshLayout
Android官方下拉刷新控件SwipeRefreshLayout
841 0
Android官方下拉刷新控件SwipeRefreshLayout
水星 SG108 PRO/1.0 网络端口镜像 使用流程
水星 SG108 PRO/1.0 网络端口镜像 使用流程
417 1
|
数据处理 Python
Python中数据去重的重要性、技巧和实现代码
Python中数据去重的重要性、技巧和实现代码