机器视觉系统的“大脑”-图像处理单元简述

简介:

图像处理单元由图像处理软件完成,图像处理软件包含大量图像处理算法。在取得图像后,用这些算法对数字图像进行处理,分析计算,并输出结果。
由于机器视觉应用领域的高速发展,核心软件的竞争已从过去单纯追求软件多功能的竞争,转向对视觉算法的准确性、高效性的竞争。常规的机器视觉软件均可提供匹配工具、特征分析工具等多种视觉功能,但由于算法设计的不同,可能只适用于特定的应用。
为满足用户更加多样化的需求,软件的开发逐步演化为软件平台的开发,在软件功能无法满足客户的需要时,用户可以进行灵活的二次开发。这也是软件算法研发的技术壁垒之所在。
只有优秀的机器视觉图像处理软件才能进行快速而又准确的检查,且减少对硬件系统的依赖性。国内这方面比较出色的机器视觉软件例如维视图像的机器视觉IPS图像处理软件应用比较广泛。
机器视觉图像采集
图像采集单元中最重要的元件是图像采集卡,它是图像采集部分和图像处理部分的接口。一般具有以下的功能模块:
1、图像信号的接收与A/D 转换模块,负责图像信号的放大与数字化。有用于彩色或黑白图像的采集卡。彩色输入信号可分为复合信号或RGB分量信号。
2、摄像机控制输入输出接口,主要负责协调摄像机进行同步或实现异步重臵拍照、定时拍照等。
3、 总线接口,负责通过PC机内部总线高速输出数字数据,一般是PCI 接口,传输率可高达130Mbps,完全能胜任高精度图像的实时传输。且占用较少的CPU 时间。在选择图像采集卡时。主要应考虑到系统的功能需求、图像的采集精度和与摄像机输出信号的匹配等因素。
目前使用最为普遍的是A/D 转换技术。
机器视觉企业之间的竞争,说到底就是算法准确性的竞争,因此每个企业都会投入很多的资源对核心软件进行开发。由机器视觉的总体成本分布可以看出,80%的成本来源于部件购买以及软开发。部件中最关键的部分就是半导体芯片,每个环节的硬件设施中都需要芯片技术以及电路集成。软件是机器视觉的大脑,只有在软件将采集到的图像数据化以后,机器才能进行识别和检测等功能机器视觉图像处理软件的选择,决定着检测算法的准确性。

相关文章
|
6月前
|
编解码 监控 算法
图像和视频处理中DSP算法的研究与发展
图像和视频处理中DSP算法的研究与发展
137 2
|
6月前
|
机器学习/深度学习 算法 数据挖掘
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
597 1
|
6月前
|
机器学习/深度学习 人工智能 监控
机器视觉:原理、应用与实现
机器视觉:原理、应用与实现
136 1
|
机器学习/深度学习 人工智能 并行计算
深度学习设计的衍射处理器并行计算数百个变换
深度学习设计的衍射处理器并行计算数百个变换
深度学习设计的衍射处理器并行计算数百个变换
|
机器学习/深度学习 人工智能 编解码
TPAMI 2023 | 无创解码大脑信号语义,中科院自动化所研发脑-图-文多模态学习模型
TPAMI 2023 | 无创解码大脑信号语义,中科院自动化所研发脑-图-文多模态学习模型
129 0
|
机器学习/深度学习 传感器 编解码
毫米波雷达在多模态视觉任务上的近期工作及简析(上)
在近些年,2D检测任务在自动驾驶的热度递减,取而代之的是3D任务,毕竟现在的实际场景一直多是基于3D场景。但是在3D检测或者分割等任务中,雷达赋予了一个不一样的角色,在之前FOV视角中,毫米波点云大多为了与FOV特征融合,都是通过投影这一种方法,而放到3D场景中,分为两个流派:一个是点云流派:由于lidar和radar具有天然的相似性(当然是处理后的点云),自然就有lidar的相关角色赋予毫米波雷达,相应的,毫米波的角色从FOV到了BEV,它的下游任务,也从辅助为主到BEV下的分割、深度估计、生成密集点云等。
毫米波雷达在多模态视觉任务上的近期工作及简析(上)
|
传感器 数据采集 机器学习/深度学习
毫米波雷达在多模态视觉任务上的近期工作及简析(下)
在近些年,2D检测任务在自动驾驶的热度递减,取而代之的是3D任务,毕竟现在的实际场景一直多是基于3D场景。但是在3D检测或者分割等任务中,雷达赋予了一个不一样的角色,在之前FOV视角中,毫米波点云大多为了与FOV特征融合,都是通过投影这一种方法,而放到3D场景中,分为两个流派:一个是点云流派:由于lidar和radar具有天然的相似性(当然是处理后的点云),自然就有lidar的相关角色赋予毫米波雷达,相应的,毫米波的角色从FOV到了BEV,它的下游任务,也从辅助为主到BEV下的分割、深度估计、生成密集点云等。
毫米波雷达在多模态视觉任务上的近期工作及简析(下)
|
机器学习/深度学习 传感器 存储
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(下)
论文调查的主要目的是介绍VSLAM系统的最新进展,并讨论现有的挑战和未来趋势。论文对在VSLAM领域发表的45篇有影响力的论文进行了深入的调查,并根据不同的特点对这些方法进行了分类,包括novelty domain、目标、采用的算法和语义水平。最后论文讨论了当前的趋势和未来的方向,有助于研究人员进行研究。
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(下)
|
传感器 机器学习/深度学习 数据采集
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(上)
论文调查的主要目的是介绍VSLAM系统的最新进展,并讨论现有的挑战和未来趋势。论文对在VSLAM领域发表的45篇有影响力的论文进行了深入的调查,并根据不同的特点对这些方法进行了分类,包括novelty domain、目标、采用的算法和语义水平。最后论文讨论了当前的趋势和未来的方向,有助于研究人员进行研究。
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(上)
|
机器学习/深度学习 传感器 存储
最新综述!分析用于实时车载激光雷达感知的点云深度学习表示(空间结构/光栅化/坐标系)
随着帧速率、点云大小和传感器分辨率的增加,这些点云的实时处理仍必须从车辆环境的这张日益精确的图片中提取语义。在这些点云上运行的深度神经网络性能和准确性的一个决定因素是底层数据表示及其计算方式。本文调查了神经网络中使用的计算表示与其性能特征之间的关系,提出了现代深度神经网络中用于3D点云处理的LiDAR点云表示的新计算分类法。使用这种分类法,对不同的方法家族进行结构化分析,论文揭示了在计算效率、内存需求和表示能力方面的共同优势和局限性,这些都是通过语义分割性能来衡量的。最后,论文为基于神经网络的点云处理方法的未来发展提供了一些见解和指导。
最新综述!分析用于实时车载激光雷达感知的点云深度学习表示(空间结构/光栅化/坐标系)