数据蒋堂 | 存储和计算技术的选择

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

前一阵子公司有个售前来沟通某个用户的情况:数据量比较大,又涉及很多复杂的关联计算,在数据库中用SQL计算性能很差。本来这种场景是比较适合集算器的集文件(集算器特有的压缩二进制格式)存储并计算,但据说这个用户的历史数据还会经常变动,而集文件目前没有提供改写能力(为了保证压缩率和性能),也就不容易直接用。于是想推荐用户采用nosql产品做存储,集算器在上面做计算。

赶快打住!如果用户真的听了,那会恨死我们。

这个场景中有三个要素:数据量大、复杂计算、频繁改动。

为了解释这三者的大致关系,我画了一个不太严谨的图:

5053fa26110b83a0eee60bd16db4271247398403

NoSQL数据库在存储时不考虑事务一致性,而且许多NoSQL产品对key-value结构(要改的数据肯定要有个key)的数据都会采用LSM树等优化手段,一般情况比RDB常用的B树性能要好,所以对于频繁改的应用,NoSQL的效率会比较高。相反,RDB虽然也能频繁改,但为了事务一致性等因素,效率就会低于NoSQL。

但key-value结构的NoSQL却不擅长大数据计算,除了按key找value比较快以外,涉及到遍历(这是家常便饭)的运算都不灵光,主要是因为value是无确定结构的,每次取出数据要现解析,而且数据结构也会多存很多空间,所以大数据计算效率就会远远低于RDB(所以上述场景一定要打住,绝不可以推荐NoSQL)。

RDB频繁修改后会导致数据在硬盘上的连续性很差,也不容易做好压缩,这样大数据量遍历的性能也不会太好。而RDW在RDB基础上做了运算优化,可以事先整理数据,放弃了复杂的写一致性能力,这样对于大数据计算就会有更好的性能。但反过来,频繁改就不适合了。

RDB和RDW都采用SQL体系运算,对于简单查询计算没太大问题,但过于复杂的关联和过程性运算,由于关系代数的局限性,很多优化算法无法实施(我们已经多次说过这个问题),所以在复杂运算场景下性能不佳(也就会发生上述场景的现象)。

集算器是为了复杂计算而设计,可以实现更优的算法获得更好的性能。但如开始所述,目前的集文件又不支持改写,所以它只适合解决复杂运算,而难以面对频繁改的场景。集算器其实比RDW在大数据计算性能方面更好,不过作为计算引擎并不太关注存储,而大数据需求中还是会比较在意的可维护管理能力就要弱了。

集算器进一步发展出来的仓库版将支持少量修改的存储方案,这样可以在保证复杂运算能力的基础上再提供数据维护能力,可以逐步替代数据仓库,不过也不合适频繁修改。而另一个方向的云库版则更注重结构多样性,同时也支持事务一致性,能适应频繁改,而且有集算器提供复杂计算能力,但同前面分析NoSQL的理由,这时候它又不适合大数据遍历了。

那么这三样都想要怎么办呢?难道就只能见鬼去?


原文发布时间为:2018-04-11

本文作者:蒋步星

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
22天前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
23天前
|
XML NoSQL 大数据
大数据中半结构化数据
【10月更文挑战第18天】
53 4
|
23天前
|
存储 SQL 分布式计算
大数据中结构化数据
【10月更文挑战第18天】
51 4
|
23天前
|
存储 分布式计算 自然语言处理
大数据中非结构化数据
【10月更文挑战第18天】
76 4
|
4月前
|
存储 安全 容灾
云存储:重塑数据存储与访问的未来图景
加强数据加密:采用先进的加密算法对敏感数据进行加密处理,确保数据在传输和存储过程中的安全性。 实施访问控制:建立完善的访问控制机制,对用户身份进行验证和授权,防止未经授权的访问和数据泄露。 定期备份与恢复:定期对数据进行备份和恢复测试,确保在发生意外情况时
|
存储 大数据
大数据可能“说谎”,非结构化数据将呈现更丰富的世界
作者:Ftrans飞驰传输CEO朱旭光 在2017年的下半年谈论大数据似乎已经没有什么新意,甚至有些令人生厌了,毕竟这个词在中国已经流行太久,形形色色的产品、平台和公司早已贴满了大数据标签,而真正有价值的创新永远都是少数。
1408 0