HDU Bone Collector

简介:

Bone Collector

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 85 Accepted Submission(s): 49
Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
 
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the maximum of the total value (this number will be less than 231).
 
Sample Input
1
5 10
1 2 3 4 5
5 4 3 2 1
 
Sample Output
14

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。
比如01背包问题。

/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,
它们的重量分别是W1,W2,...,Wn,
它们的价值分别为P1,P2,...,Pn.
若每种物品只有一件求旅行者能获得最大总价值。
输入格式:
M,N
W1,P1
W2,P2
......
输出格式: 

*/

因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。
测试数据:
10,3
3,4
4,5
5,6



c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.

这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)

从以上最大价值的构造过程中可以看出。

 
 

 标准的01背包问题。状态转移方程

f[i][v] = max{f[i-1][v-c[i]]+v[i],f[i-1][v]}

 

复制代码
#include <iostream>
#include
<string.h>
#include
<stdio.h>
using namespace std;
int main()
{
int T,N,V,f[1001],vol[1001],val[1001] ,tem;
scanf(
"%d",&T);
while(T--)
{
scanf(
"%d %d",&N,&V);
for(int i = 0 ; i < N ; i++)
scanf(
"%d",&val[i]);
for(int i = 0 ; i < N ; i++)
scanf(
"%d",&vol[i]);
memset(f,
0,sizeof(f));
for(int i = 0 ; i < N ; i++)
{
for(int j = V ; j >= vol[i]; j--)
{
tem
= f[j-vol[i]]+val[i];
if(f[j]<tem)
f[j]
= tem;
}
}
cout
<<f[V]<<endl;
}
return 0;
}
复制代码
本文转自NewPanderKing51CTO博客,原文链接: http://www.cnblogs.com/newpanderking/archive/2011/08/22/2149874.html  ,如需转载请自行联系原作者
相关文章
|
8月前
|
Java
hdu-2602-Bone Collector
hdu-2602-Bone Collector
36 0
UVa11565 - Simple Equations
UVa11565 - Simple Equations
54 0
ZOJ - Summer 2018 - Contest 2 by Astolfo - Problems - 1002: Hazard and The Triangle
ZOJ - Summer 2018 - Contest 2 by Astolfo - Problems - 1002: Hazard and The Triangle
114 0
ZOJ - Summer 2018 - Contest 2 by Astolfo - Problems - 1002: Hazard and The Triangle
|
存储 算法 测试技术
|
机器学习/深度学习