HDU Digital Roots

简介:

Digital Roots

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 176 Accepted Submission(s): 91
Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
 
Input
The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
 
Output
For each integer in the input, output its digital root on a separate line of the output.
 
Sample Input
24
39
0
 
 
#include <iostream>
#include <string.h>
using namespace std;
int num;
int di(int a)
{
    num =0;
    while(a>9)
    {
        num+=a%10;
  a = a/10;
    }
 num +=a;
    return num;
}
int main()
{
    int t;
    string n;
    while(cin>>n&&(n[0]-'0'))
    {
        t = 0;
        for(int i = 0 ; i < n.length() ; i++)
        {
            t += n[i]-'0';
        }
        if(t<10)cout<<t<<endl;
        else
        {
            t = di(t);
            while(t>9)t = di(t);
            cout<<t<<endl;
        }
    }
    return 0;
}







本文转自NewPanderKing51CTO博客,原文链接http://www.cnblogs.com/newpanderking/archive/2011/07/26/2117679.html ,如需转载请自行联系原作者




相关文章
UVa10484 - Divisibility of Factors(数论)
UVa10484 - Divisibility of Factors(数论)
71 1
|
算法 Go
HDU-1548,A strange lift(Dijkstra)
HDU-1548,A strange lift(Dijkstra)
HDOJ 1013 Digital Roots
HDOJ 1013 Digital Roots
115 0
|
机器学习/深度学习
HDOJ 1163 Eddy's digital Roots(九余数定理的应用)
HDOJ 1163 Eddy's digital Roots(九余数定理的应用)
112 0
HDOJ/HDU 1372 Knight Moves(经典BFS)
HDOJ/HDU 1372 Knight Moves(经典BFS)
140 0
|
Java
HDOJ(HDU) 1720 A+B Coming(进制)
HDOJ(HDU) 1720 A+B Coming(进制)
124 0
|
机器学习/深度学习