Predix Asset Service深度分析

简介:

前言

在IIOT领域,面临着保存海量数据的挑战,具体到Asset层面,则要保存物理对象,逻辑对象,复杂的关系,并支持对象间的组合,分类,标签和高效查询。总结来说,可以归纳为如下几种需求:

 

  1. 灵活的建模风格:支持不同业务领域业务对象

  2. 支持自定义属性:可以是简单的字符串,也可以是对象

  3. 支持对象间关系:层次或图关系

  4. 支持对象间组合:如电机由线圈和转子组成

  5. 支持分类:对对象做宏观分类并保存公共属性

  6. 支持标签:方便用户查询

  7. 支持灵活和高性能查询:支持针对属性,针对关系,层次等查询。

  8. 操作历史:操作日志和审计

  9. 业务能力扩展:脚本

架构

Predix架构如下所示:

 

  • REST API layer

Client应用可以通过REST API服务获取asset数据。这些接口提供了JSON形式的接口,用户可以通过POST形式传递这些数据。为了使用这些API,应用程序发送HTTPS请求并解析响应。可以使用任何web端开发语言解析。

  • Representation layer

Representation Layer将数据由JSON转换为内部图形式表示,也负责完成相反的过程。

  • Query engine

Query engine允许开发者使用JSON AND Graph Expression(GEL)来获取Asset Data Store中保存的任意对象或对象属性的数据。

  • Audit History Service

提供API用来获取Asset Service库中REST请求的历史信息。

  • Script engine

使用户能够将定制的业务逻辑绑定到Asset Service的REST API上。

  • Cassandra graph database

Assert Service将数据保存于Apache Cassandra Nosql数据库中

数据模型

asset

Asset模型可以理解为物理设备在虚拟世界的映射,Asset不但包含设备本身,也包含该设备如何组织和关联的信息。

classification

对asset进行分类,并保存其公共信息。

custom modeling object

自定义的模型,用来进一步进行描述,如生产商等。

API Category Description
Assets 典型的,我们采用层次结构定义asset,由parent asset和一个或多个child asset组成。我们可以将asset与一个classification或任意数目的custom modeling object关联。Asset可以包含任意多个用户自定义属性(custom-defined attribute)。

一个asset也可独立存在于系统中,不与任何的其他建模元素关联。
Classifications

采用树状结构组织,并了一种对asset进行分组和跟踪公共属性的手段。一个classification可以指向多个asset。classification的任意层次上均可以指定attribute。

Custom modeling objects

定制模型对象(custom modeling object)是层次化的,我们可以使用它为asset提供更多的信息。例如,我们可以为asset location,manufactureer等创建单独的对象。一个location可以与多个asset关联,类似的,一个asset也可以关联多个location。

模型示例

Fleets Sample JSON

{

"uri":"/fleets/up-1",

"name":"Union Pacific Fleet 1",

"customer":"/customers/union-pacific"

},

Manufacturers Sample JSON

"uri":"/manufacturers/GE",

"name":"General Electric Transportation",

"year_founded":"1892",

"hqLatLng":{

        "lat":41.881138, 

        "lng":-87.640666}

}

Engines Sample Data

{

"uri":"/engines/v12-1",

"type":"7FDL",

"horsepower":"4400",

"stroke":"230",

"bore":"220",

"RPM":"2400",

"manufacturer":"/manufacturers/GE"

}

Locomotives Sample JSON

{

"uri":"/locomotives/1",

"type":"Diesel-electric",

"model":"ES44AC",

"serial_no":"001",

"emission_tier":"0+",

"fleet":"/fleets/up-1",

"manufacturer":"/manufacturers/GE",

"engine":"/engines/v12-1",

"installedOn":"01/12/2005",

"dateIso":"2005-12-01T13:15:31Z",

"hqLatLng":{

"lat":33.914605,

"lng":-117.253374

}

}

从上面的例子可以看出模型是如何组织的。

存储分析

Asset的存储要考虑两个部分,json-schema和json。json-schema是json的校验标准,任何对存储系统的修改都需要使用json-schema校验。更加抽象的思考,json-schema类似于面向对象的类,而json则是类的实现:对象。只是这种实例化是由RESTAPI触发的,且合法性由json-schema保证。

 

由于工业领域需要面对海量对象,海量关系及多种结构的数据对象(blob value,,picture, log)等,传统的SQL数据库必然无法满足这些需求,且对于JSON来说,最适合应用key-value数据库类型,当然该数据库需要提供良好的性能及可扩展性。

 

经过近些年的发展,cassandra与hbase在不同领域内的应用出现了分化,hbase纪玉hadoop,支持mapreduce,更加适合于大数据计算的场景;而cassandra除了在范围查询性能落后与hbase之外,在易用性,可扩展性,健壮性(无管理节点),以及在大多数的性能应用场景上对hbase存在优势,因此考虑使用cassandra作为asset的存储。

 

具体的,使用cassandra要满足如下的要求:

 

  • 良好的横向扩展性

  • 良好的可维护性

  • 高性能

  • 支持历史记录存储

  • 能够扩展关系存储及查询

可扩展性

Predix提供了Javascript语言支持更多的自定义应用。

 

JS支持是JDK自带的功能,而Predix将此功能应用在REST API上,能够在REST API的执行前后运行JS脚本,实现功能的扩展。其中REST API既可以是资源的CRUD API,也可以是自定义API。其执行逻辑为:开始--->(JS代码)--->REST API--->(JS代码)-->系统通知

 

也即JS代码可以选择在REST API执行前后执行,如果JS代码在REST API执行前,则可用于输入数据校验等,如果在REST API执行后,则可进行通知发送等应用。为了更加灵活的使用JS代码,JS代码中可以引用已经定义的工具方法(Predix提供),也可以调用其他REST API接口。

 

JS代码执行时工业云应用必备的部分,如SCADA系统和Thingwrox均提供了JS代码执行功能。但Thingwrox的JS执行依附于Thing本身(自定义方法)及订阅,而Predix则基于对已有REST API的封装(当然也支持自定义的REST API),总的来说Thingwrox实现的功能,predix也能实现。

 

例如:

        1. 调用系统方法(predix和thingwrox均提供了系统方法)

        2. 调用asset的属性(均可,thingwrox可以在脚本中通过this.引用)

        3. 调用asset的方法(thingwrox可以,predix不明)

        4. 调用其他asset的属性(predix通过restapi查询)

        5. 调用其他asset的方法(可以实现,只要是REST API形式暴露)

        6. 执行结果返回(predix可以通过消息队列返回数据)

        

关键技术

JSON-SCHEMA

http://json-schema.org/,

 

用以描述JSON的数据结构并做验证,JSON-SCHEMA是静态JSON描述,本身不具有任何约束力,需要在实现中加以限制:如执行新增操作时必须验证SCHEMA。

 

CASSANDRA

CASSANDRA是一个key-value数据库,具有高性能,高可靠性,去中心化等特性,并支持GRAPH扩展。

 

http://www.cnblogs.com/loveis715/p/5299495.html 

GEL

如果数据只能存储而不能查询,那就没有任何意义。predix定义了GEL语言用于查询Asset数据,该查询语言是灵活的,支持分页,过滤,正则表达式及关系查询。Asset服务就是要存储所有的模型数据,因此不能针对具体需求做针对性的开发。

 

在Asset  Service中,专门存在查询引擎(Graph Expression Lanauge Query Engine)完成这一功能,这也是工业云平台开发中所必须的。

 

业界比对

这里主要与Thingwrox做比对,Thingworx更是一个物联网平台,而Predix是工业云平台,定位不同,决定了这两个平台在设计上的取舍不同。

 

从建模进行比较,Thingworx弱化了多租户概念,并且基于对类-对象的抽象,给出了Thing-ThingTemplate-ThingShape的模型,能够对每一物理/逻辑实体进行建模。如一个泵,或者是以datasource;而Predix更偏重与处理工业领域的物理实体映射,并不试图建立一个包含一切的建模环境,这种取舍,在工业领域是可以理解的。








      本文转自zsdnr  51CTO博客,原文链接:http://blog.51cto.com/12942149/1932740,如需转载请自行联系原作者


相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
运维 安全 Cloud Native
全方位解读服务网格(Service Mesh)的背景和概念
为了解决微服务框架的侵入性问题,我们引入服务网格。
4532 0
全方位解读服务网格(Service Mesh)的背景和概念
|
4月前
|
开发框架 缓存 .NET
【App Service】在Azure App Service中分析.NET应用程序的性能的好帮手(Review Stack Traces)
【App Service】在Azure App Service中分析.NET应用程序的性能的好帮手(Review Stack Traces)
|
4月前
|
XML 开发框架 JSON
【Azure 应用程序见解】 Application Insights 对App Service的支持问题
【Azure 应用程序见解】 Application Insights 对App Service的支持问题
|
7月前
|
运维 Kubernetes 安全
Service Mesh 落地路径
【2月更文挑战第29天】该文讨论了在非Kubernetes环境下如何引入Service Mesh。若业务已在Kubernetes上,Istio是理想选择;否则,有两种路径:1) 先采用Sidecar解决眼前需求,若未来计划容器化,再转向Istio;2) 先进行Kubernetes改造,然后接入Istio以充分利用其优势。文章建议,出于性能考虑,可简化Istio的Mixer组件,仅保留核心的Envoy和Pilot,安全特性应根据业务环境灵活选择。对于特定平台,可以定制优化Istio以提高性能。
|
Rust Kubernetes 负载均衡
Service Mesh 体系解析
Service Mesh(服务网格)诞生于云原生生态领域的潮流中,虽然大家对这一技术生态充满不确定性,甚至难以接受,然而,如果我们消除外面的“杂声”,细心洞察里面的细节,或许能有不一样的收获,毕竟,所有新技术的出现是为了解决业务痛点,而非是为了一些没用意义的炒作。
370 0
|
前端开发 JavaScript 数据库
使用 DB3 Network 构建一款去中心化社交应用数据模型,帮助 Firebase 开发者快速切入 Web3
目前社交应用的去中心化的需求日渐凸显,相关的应用和开发工具掀起了一波波的浪潮,DB3 Network作为一款去中心化数据库,可以帮助前端开发者以及firebase开发者快速构建一个简单的社交应用数据模型。文中附CLI工具使用方法。
260 0
使用 DB3 Network 构建一款去中心化社交应用数据模型,帮助 Firebase 开发者快速切入 Web3
|
自然语言处理 运维 Dubbo
Service Mesh 从“趋势”走向“无聊”
过去一年,阿里巴巴在 Service Mesh 的探索道路上依旧扎实前行,这种坚定并非只因坚信 Service Mesh 未来一定是云计算基础技术的关键组成部分,还因需要借这一技术趋势去偿还过去所积累下来的技术债(“技术债”并非贬义词,是技术发展的固有产物),基于当下的技术思潮和最佳实践面向未来做出技术的新价值和新体验。
Service Mesh 从“趋势”走向“无聊”
|
缓存 运维 负载均衡
蚂蚁金服 Service Mesh 大规模落地系列 - 控制面篇
本文为《蚂蚁金服 Service Mesh 大规模落地系列》第七篇 - 控制面篇,聚焦控制面核心组件 Pilot 和 Citadel,分享蚂蚁金服双十一控制面如何管理并服务好全站 Sidecar。
1466 0
蚂蚁金服 Service Mesh 大规模落地系列 - 控制面篇