数据结构和算法12 之希尔排序

简介:

 上一章我们学习了冒泡排序、选择排序和插入排序三种基础排序算法,这三种排序算法比较简单,时间复杂度均为O(N2),效率不高。这节我们讨论一个高级排序算法:希尔排序。希尔排序是基于插入排序的,插入排序有个弊端,假设一个很小的数据项在很靠近右端的位置上,那么所有的中间数据项都必须向右移动一位,这个步骤对每一个数据项都执行了将近N次的复制,这也是插入排序效率为O(N2)的原因。

        希尔排序的中心思想是将数据进行分组,然后对每一组数据进行插入排序,在每一组数据都有序后,再对所有的分组利用插入排序进行最后一次排序。这样可以显著减少数据交换的次数,以达到加快排序速度的目的。

这种思想需要依赖一个增量序列,我们称为n-增量,n表示进行排序时数据项之间的间隔,习惯上用h表示。为了很好的理解增量排序,我们看下面的示意图:


        上图显示了增量为4时对10个数据项进行排序的示意图,一趟后0、4、8三个位置上的数据项已经排好序,接下来,算法向右移动一步,对1、5、9三个位置的数据项进行排序,这个过程一直持续进行,直到所有数据项都完成了一次4-增量排序,然后缩小增量,再重复上面的过程,最后一次增量为1,对所有的数据项进行一次插入排序,从而完成了希尔排序的全部步骤。因为最后一趟都已经基本有序了,所以复杂度没有向普通插入排序那么大了。

       说到这里,大家应该可以明白,增量序列在希尔排序中是很重要的。一般好的增量序列都有2个共同的特征:

        1. 最后一个增量必须为1,保证最后一趟是一次普通的插入排序;

        2. 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况

       这篇文章中我们使用增量序列用 h = 3 * h + 1来生成。h初值被赋予1,然后使用该公式生成序列1、4、13、40、121、364等等,当间隔大于数组大小的时候停止,使用序列的最大数组作为间隔开始希尔排序过程,然后没完成一次排序,用倒推公式 h = (h - 1) / 3来减小间隔,保证最后一次h=1,完成最后一次插入排序。

        说完了原理,下面看看具体实现代码:

[java]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. public void shellSort2() {  
  2.     int h = 1;  
  3.     while(h <= nElem / 3) {  
  4.         h = h * 3 + 1//增量间隔  
  5.     }  
  6.       
  7.     while(h > 0) {  
  8.         for(int i = h; i < nElem; i++) {  
  9.             //每个增量间隔内,实现插入排序,两个for循环和插入排序一样,只不过第二个for循环里参数略有调整而已,和h有关  
  10.             for(int j = i; j < nElem; j += h) {  
  11.                 for(int k = j; (k - h >= 0) && a[k] < a[k - h]; k -= h) {  
  12.                     swap(k, k-h);  
  13.                 }  
  14.             }  
  15.         }  
  16.         h = (h-1) / 3;  
  17.     }  
  18. }  

        算法分析:希尔排序时间复杂度平均为O(NlogN),最好与最坏情况要根据具体的增量序列来判断,对于不同的增量序列有不同的复杂度。希尔排序的性能优于直接插入排序,因为在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来随着增量逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但是由于已经局部排过序了,所以已经接近有序状态,新的一趟排序过程也较快。因此,希尔排序在效率上较直接插入排序有较大的改进。

        希尔排序是不稳定的,因为不同的间隔对应的数据是独自比较的,如果a=b,但是不在同一个间隔上,显然会出现前后颠倒的情况,所以希尔排序是不稳定的。

        空间复杂度为O(1),不需要额外的存储空间。

        希尔排序就介绍到这,如有错误之处,欢迎留言指正~+


转载:http://blog.csdn.net/eson_15/article/details/51168467

目录
相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
84 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
33 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
35 4
|
2月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
24 1
|
2月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
22 0
数据结构与算法学习十四:常用排序算法总结和对比
|
2月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
2月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
25 0
|
27天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
123 9
|
18天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
22 1
|
5天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
26 5