GAN Zoo:千奇百怪的生成对抗网络,都在这里了(73个)

简介:
本文来自AI新媒体量子位(QbitAI)

自从Goodfellow2014年提出这个想法之后,生成对抗网络(GAN)就成了深度学习领域内最火的一个概念,包括LeCun在内的许多学者都认为,GAN的出现将会大大推进AI向无监督学习发展的进程。

于是,研究GAN就成了学术圈里的一股风潮,几乎每周,都有关于GAN的全新论文发表。而学者们不仅热衷于研究GAN,还热衷于给自己研究的GAN起名,比如什么3D-GAN、BEGAN、iGAN、S²GAN……千奇百怪、应有尽有。

今天,量子位决定带大家逛逛GANs的动物园(园长:Avinash Hindupur),看看目前世界上到底存活着多少GAN。

GAN —  Generative Adversarial Networks

https://arxiv.org/abs/1406.2661

3D-GAN —  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

https://arxiv.org/abs/1610.07584

AdaGAN —  AdaGAN: Boosting Generative Models

http://arxiv.org/abs/1701.02386v1

AffGAN —  Amortised MAP Inference for Image Super-resolution

https://arxiv.org/abs/1610.04490

ALI —  Adversarially Learned Inference

https://arxiv.org/abs/1606.00704

AMGAN —  Generative Adversarial Nets with Labeled Data by Activation Maximization

http://arxiv.org/abs/1703.02000v1

AnoGAN —  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

http://arxiv.org/abs/1703.05921v1

ArtGAN —  ArtGAN: Artwork Synthesis with Conditional Categorial GANs

https://arxiv.org/abs/1702.03410

b-GAN —  b-GAN: Unified Framework of Generative Adversarial Networks

https://openreview.net/pdf?id=S1JG13oee

Bayesian GAN —  Deep and Hierarchical Implicit Models

https://arxiv.org/abs/1702.08896

BEGAN —  BEGAN: Boundary Equilibrium Generative Adversarial Networks

http://arxiv.org/abs/1703.10717v2

BiGAN —  Adversarial Feature Learning

http://arxiv.org/abs/1605.09782v7

BS-GAN —  Boundary-Seeking Generative Adversarial Networks

http://arxiv.org/abs/1702.08431v1

CGAN —  Towards Diverse and Natural Image Descriptions via a Conditional GAN

http://arxiv.org/abs/1703.06029v1

CCGAN —  Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

https://arxiv.org/abs/1611.06430v1

CatGAN —  Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

http://arxiv.org/abs/1511.06390v2

CoGAN —  Coupled Generative Adversarial Networks

http://arxiv.org/abs/1606.07536v2

Context-RNN-GAN —  Contextual RNN-GANs for Abstract Reasoning Diagram Generation

https://arxiv.org/abs/1609.09444

C-RNN-GAN —  C-RNN-GAN: Continuous recurrent neural networks with adversarial training

https://arxiv.org/abs/1611.09904

CVAE-GAN —  CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

https://arxiv.org/abs/1703.10155

CycleGAN —  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

https://arxiv.org/abs/1703.10593

DTN —  Unsupervised Cross-Domain Image Generation

https://arxiv.org/abs/1611.02200

DCGAN —  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

https://arxiv.org/abs/1511.06434

DiscoGAN —  Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

http://arxiv.org/abs/1703.05192v1

DualGAN —  DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

http://arxiv.org/abs/1704.02510v1

EBGAN —  Energy-based Generative Adversarial Network

http://arxiv.org/abs/1609.03126v4

f-GAN —  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

https://arxiv.org/abs/1606.00709

GoGAN —  Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

https://arxiv.org/abs/1704.04865

GP-GAN —  GP-GAN: Towards Realistic High-Resolution Image Blending

http://arxiv.org/abs/1703.07195v2

IAN —  Neural Photo Editing with Introspective Adversarial Networks

https://arxiv.org/abs/1609.07093

iGAN —  Generative Visual Manipulation on the Natural Image Manifold

https://arxiv.org/abs/1609.03552v2

IcGAN —  Invertible Conditional GANs for image editing

https://arxiv.org/abs/1611.06355

ID-CGAN- Image De-raining Using a Conditional Generative Adversarial Network

http://arxiv.org/abs/1701.05957v3

Improved GAN —  Improved Techniques for Training GANs

https://arxiv.org/abs/1606.03498

InfoGAN —  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

http://arxiv.org/abs/1606.03657v1

LR-GAN —  LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

http://arxiv.org/abs/1703.01560v1

LSGAN —  Least Squares Generative Adversarial Networks

http://arxiv.org/abs/1611.04076v3

LS-GAN —  Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities

http://arxiv.org/abs/1701.06264v5

MGAN —  Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

https://arxiv.org/abs/1604.04382

MAGAN —  MAGAN: Margin Adaptation for Generative Adversarial Networks

http://arxiv.org/abs/1704.03817v1

MalGAN —  Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN

http://arxiv.org/abs/1702.05983v1

MARTA-GAN —  Deep Unsupervised Representation Learning for Remote Sensing Images

https://arxiv.org/abs/1612.08879

McGAN —  McGan: Mean and Covariance Feature Matching GAN

http://arxiv.org/abs/1702.08398v1

MedGAN —  Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks

http://arxiv.org/abs/1703.06490v1

MIX+GAN —  Generalization and Equilibrium in Generative Adversarial Nets (GANs

https://arxiv.org/abs/1703.00573v3

MPM-GAN —  Message Passing Multi-Agent GANs

https://arxiv.org/abs/1612.01294

MV-BiGAN —  Multi-view Generative Adversarial Networks 

http://arxiv.org/abs/1611.02019v1

pix2pix —  Image-to-Image Translation with Conditional Adversarial Networks

https://arxiv.org/abs/1611.07004

PPGN —  Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space

https://arxiv.org/abs/1612.00005

PrGAN —  3D Shape Induction from 2D Views of Multiple Objects

https://arxiv.org/abs/1612.05872

RenderGAN —  RenderGAN: Generating Realistic Labeled Data

https://github.com/hindupuravinash/the-gan-zoo/blob/master

RTT-GAN —  Recurrent Topic-Transition GAN for Visual Paragraph Generation

http://arxiv.org/abs/1703.07022v2

SGAN —  Stacked Generative Adversarial Networks

http://arxiv.org/abs/1612.04357v4

SGAN —  Texture Synthesis with Spatial Generative Adversarial Networks

https://arxiv.org/abs/1611.08207

SAD-GAN —  SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks

http://arxiv.org/abs/1611.08788v1

SalGAN —  SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

http://arxiv.org/abs/1701.01081v2

SEGAN —  SEGAN: Speech Enhancement Generative Adversarial Network

http://arxiv.org/abs/1703.09452v1

SeqGAN —  SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

http://arxiv.org/abs/1609.05473v5

SketchGAN —  Adversarial Training For Sketch Retrieval

https://arxiv.org/abs/1607.02748

SL-GAN — Semi-Latent GAN: Learning to generate and modify facial images from attributes

https://arxiv.org/abs/1704.02166

SRGAN — Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

http://arxiv.org/abs/1609.04802v3

S²GAN — Generative Image Modeling using Style and Structure Adversarial Networks

http://arxiv.org/abs/1603.05631v2

SSL-GAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

https://arxiv.org/abs/1611.06430v1

StackGAN — StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

http://arxiv.org/abs/1612.03242v1

TGAN — Temporal Generative Adversarial Nets

http://arxiv.org/abs/1611.06624v1

TAC-GAN — TAC-GAN — Text Conditioned Auxiliary Classifier Generative Adversarial Network

http://arxiv.org/abs/1703.06412v2

TP-GAN — Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

https://arxiv.org/abs/1704.04086

Triple-GAN — Triple Generative Adversarial Nets

http://arxiv.org/abs/1703.02291v2

VGAN — Generative Adversarial Networks as Variational Training of Energy Based Models

https://arxiv.org/abs/1611.01799

VAE-GAN — Autoencoding beyond pixels using a learned similarity metric

https://arxiv.org/abs/1512.09300

ViGAN — Image Generation and Editing with Variational Info Generative AdversarialNetworks

http://arxiv.org/abs/1701.04568v1

WGAN — Wasserstein GAN

http://arxiv.org/abs/1701.07875v2

WGAN-GP — Improved Training of Wasserstein GANs

https://arxiv.org/abs/1704.00028

WaterGAN — WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images

http://arxiv.org/abs/1702.07392v1

本文作者:允中 
原文发布时间:2017-04-21
相关文章
|
5月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
54 5
|
5月前
|
机器学习/深度学习 数据可视化 算法框架/工具
【深度学习】Generative Adversarial Networks ,GAN生成对抗网络分类
文章概述了生成对抗网络(GANs)的不同变体,并对几种经典GAN模型进行了简介,包括它们的结构特点和应用场景。此外,文章还提供了一个GitHub项目链接,该项目汇总了使用Keras实现的各种GAN模型的代码。
81 0
|
7月前
|
机器学习/深度学习 自然语言处理 算法
生成对抗网络(GAN):创造与竞争的艺术
【6月更文挑战第14天】**生成对抗网络(GANs)**是深度学习中的亮点,由生成器和判别器两部分构成,通过博弈式训练实现数据生成。GAN已应用于图像生成、修复、自然语言处理和音频生成等领域,但还面临训练不稳定性、可解释性差和计算资源需求高等挑战。未来,随着技术发展,GAN有望克服这些问题并在更多领域发挥潜力。
|
6月前
|
机器学习/深度学习 PyTorch API
生成对抗网络(GAN)由两部分组成:生成器(Generator)和判别器(Discriminator)。
生成对抗网络(GAN)由两部分组成:生成器(Generator)和判别器(Discriminator)。
|
8月前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:生成对抗网络(GAN)
使用Python实现深度学习模型:生成对抗网络(GAN)
192 3
|
8月前
|
机器学习/深度学习 JavaScript 算法
深度学习500问——Chapter07:生成对抗网络(GAN)(1)
深度学习500问——Chapter07:生成对抗网络(GAN)(1)
148 3
|
8月前
|
机器学习/深度学习 人工智能 编解码
【AI 生成式】生成对抗网络 (GAN) 的概念
【5月更文挑战第4天】【AI 生成式】生成对抗网络 (GAN) 的概念
【AI 生成式】生成对抗网络 (GAN) 的概念
|
8月前
|
机器学习/深度学习
GAN网络的代码实现(学习ing)
GAN网络的代码实现(学习ing)
|
8月前
|
机器学习/深度学习 编解码 自然语言处理
深度学习500问——Chapter07:生成对抗网络(GAN)(3)
深度学习500问——Chapter07:生成对抗网络(GAN)(3)
110 0
|
8月前
|
机器学习/深度学习 JavaScript Linux
深度学习500问——Chapter07:生成对抗网络(GAN)(2)
深度学习500问——Chapter07:生成对抗网络(GAN)(2)
125 0

热门文章

最新文章