algebra单元

简介: unit algebra; interface const MaxN=30;{You can increase it up to 100,not greater but each matrix variable would have size of sqr(MaxN)*sizeof(Real).

unit algebra;

interface
const MaxN=30;{You can increase it up to 100,not greater
but each matrix variable would have size of
sqr(MaxN)*sizeof(Real). It is possible to write
unit for work with dinamically sized matrices,
but i have no needs to do this.
You can work with matrices with size less that MaxN,
but while you work with this unit you must allocate
memory for matrix MaxN x MaxN and leave rest of space
unised}
type vector=array[1..MaxN]of real;
matrix=array[1..MaxN,1..MaxN]of real;
sett=set of 1..MaxN;

var algebrerr:boolean;
function scalar(a,b:vector;n:integer):real;
{Scalar multiplication of vectors a and b of n components}
procedure systeq(a:matrix;b:vector;var x:vector;n:integer);
{ solving n line equation system A*X=B by Gauss method}
{ sets algebrerr to True if system cannot be solved}
procedure matmult(a,b:matrix;var c:matrix;n:integer);
{ multiplication of two NxN matrixs A and B.Result - matrix C AxB=C}
procedure matadd(a,b:matrix;var c :matrix;n:integer);
{ addition of two NxN matrixs A+B=C }
procedure matconst(c:real;a:matrix;var b:matrix;n:integer);
{ multiplication matrix A on constant c cxA=B }
procedure matcadd(c1:real;a1:matrix;c2:real;a2:matrix;var b:matrix;n:integer);
{ addition of two NxN matrixs with multiplication each of them on constant
c1xA1+c2xA2=B }
procedure matinv(a:matrix;var ainv:matrix;n:integer);
{ inversion of NxN matrix A}
{ sets algebrerr to True if matrix cannot be inverted}
procedure matvec(a:matrix;b:vector;var c:vector;n:integer);
{ multiplication NxN matrix A to N-component vector B AxB=C}
function det(a:matrix;n:integer):real;
{ determinant of NxN matrix }
procedure compress(a:matrix;var b:matrix;n:integer;s:sett);
{ converse triangle matrix to simmetric,exclude rows and columns that is not
in set s (type sett=set of 0..maxN)}
function distance(a,b:vector;n:integer):real;
{ Calculate Euclide distantion in N-dimensioned space between A & B }
Procedure Transpose(var A:Matrix;M,N:Integer);
{ Transpose MxN Matrix. Put result in the same place}
Procedure EMatrix(var A:Matrix;N:Integer);
{Fills matrix by 0 and main diagonal by 1}
implementation
function scalar(a,b:vector;n:integer):real;
var i:integer;
r:real;
begin
r:=0.0;
for i:=1 to n do
r:=r+a[i]*b[i];
scalar:=r;
end;
procedure systeq(a:matrix;b:vector;var x:vector;n:integer);
var i,j,k:integer;
max:real;
begin
algebrerr:=false;
{ Conversion matrix to triangle }
for i:=1 to n do
begin
max:=abs(a[i,i]);k:=i;
for j:=succ(i) to n do
if abs(a[j,i])>max then
begin
max:=abs(a[j,i]);k:=j
end;
if max<1E-10 then begin algebrerr:=true;exit end;
if k<>i then
begin
for j:=i to n do
begin
max:=a[k,j];
a[k,j]:=a[i,j];
a[i,j]:=max;
end;
max:=b[k];
b[k]:=b[i];
b[i]:=max;
end;
for j:=succ(i) to n do
a[i,j]:=a[i,j]/a[i,i];
b[i]:=b[i]/a[i,i];
for j:=succ(i) to n do
begin
for k:=succ(i) to n do
a[j,k]:=a[j,k]-a[i,k]*a[j,i];
b[j]:=b[j]-b[i]*a[j,i];
end;
end;
{ X calculation}
x[n]:=b[n];
for i:=pred(n) downto 1 do
begin
max:=b[i];
for j:=succ(i) to n do
max:=max-a[i,j]*x[j];
x[i]:=max;
end;
end;
procedure matmult(a,b:matrix;var c:matrix;n:integer);
var i,j,k:integer;r:real;
begin
for i:=1 to n do
for j:=1 to n do
begin
r:=0.0;
for k:=1 to n do
r:=r+a[i,k]*b[k,j];
c[i,j]:=r;
end;
end;

procedure matadd(a,b:matrix;var c :matrix;n:integer);
var i,j:integer;
begin
for i:=1 to n do
for j:=1 to n do
c[i,j]:=a[i,j]+b[i,j];
end;

procedure matinv(a:matrix;var ainv:matrix;n:integer);
var i,j,k:integer;
e:matrix;
max:real;
begin
algebrerr:=false;
{ creating single matrix }
for i:=1 to n do
for j:=1 to n do
e[i,j]:=0.0;
for i:=1 to n do
e[i,i]:=1.0;
{ Conversion matrix to triangle }
for i:=1 to n do
{1} begin
max:=abs(a[i,i]);k:=i;
for j:=succ(i) to n do
if abs(a[j,i])>max then
{2} begin
max:=abs(a[j,i]);k:=j
{2} end;
if max<1E-10 then begin algebrerr:=true;exit end;
if k<>i then
{2} begin
for j:=i to n do
{3} begin
max:=a[k,j];
a[k,j]:=a[i,j];
a[i,j]:=max;
{3} end;
for j:=1 to n do
{3} begin
max:=e[k,j];
e[k,j]:=e[i,j];
e[i,j]:=max;
{3} end;
{2} end;
for j:=succ(i) to n do
a[i,j]:=a[i,j]/a[i,i];
for k:=1 to n do
e[i,k]:=e[i,k]/a[i,i];
for j:=succ(i) to n do
{2} begin
for k:=succ(i) to n do
a[j,k]:=a[j,k]-a[i,k]*a[j,i];
for k:=1 to n do
e[j,k]:=e[j,k]-e[i,k]*a[j,i];
{2} end;
{1} end;
{ ainv calculation}
for k:=1 to n do
{1} begin
ainv[n,k]:=e[n,k];
for i:=pred(n) downto 1 do
{2} begin
max:=e[i,k];
for j:=succ(i) to n do
max:=max-a[i,j]*ainv[j,k];
ainv[i,k]:=max;
{2} end;
{1} end;
end;
procedure matvec(a:matrix;b:vector;var c:vector;n:integer);
var i,j:integer;r:real;
begin
for i:=1 to n do
begin
r:=0.0;
for j:=1 to n do
r:=r+a[i,j]*b[j];
c[i]:=r;
end;
end;
function det(a:matrix;n:integer):real;
var i,j,k:integer;d:real;
begin
for i:=1 to pred(n) do
begin
if abs(a[i,i])<1E-10 then begin det:=0.0;exit end;
for j:=succ(i) to n do
begin
d:=a[j,i]/a[i,i];
for k:=i to n do
a[j,k]:=a[j,k]-d*a[i,k];
end;
end;
d:=1.0;
for i:=1 to n do
d:=d*a[i,i];
det:=d;
end;
procedure matconst(c:real;a:matrix;var b:matrix;n:integer);
var i,j:integer;
begin
for i:=1 to n do
for j:=1 to n do
b[i,j]:=c*a[i,j];
end;
procedure matcadd(c1:real;a1:matrix;c2:real;a2:matrix;var b:matrix;n:integer);
var i,j:integer;
begin
for i:=1 to n do
for j:=1 to n do
b[i,j]:=c1*a1[i,j]+c2*a2[i,j];
end;
procedure compress(a:matrix;var b:matrix;n:integer;s:sett);
var i,j,k,l:integer;
begin
k:=1;
for i:=1 to pred(n) do
if i in s then
begin
l:=1;
b[k,k]:=a[i,i];
for j:=succ(i) to n do
if j in s then
begin
b[k,l]:=a[i,j];
b[l,k]:=a[i,j];
inc(l);
end;
inc(k);
end;
end;
function distance(a,b:vector;n:integer):real;
var i:integer;r:real;
begin
r:=0;
for i:=1 to n do
r:=r+sqr(a[i]-b[i]);
distance:=sqrt(r);
end;
Procedure Transpose(var A:Matrix;M,N:Integer);
var i,j:Integer;Tmp:Real;
begin
For i:=1 to n do
for j:=i+1 to m do
begin
Tmp:=A[i,j];
A[i,j]:=A[j,i];
A[J,i]:=Tmp;
end;
end;
Procedure EMatrix(var A:Matrix;N:Integer);
var I:Integer;
begin
FillChar(A,SizeOf(A),0);
For i:=1 to n do
A[i,i]:=1.0;
end;

end.

相关文章
|
程序员
MOTOROLA MVME-147A 输出直接内置到控制单元
MOTOROLA MVME-147A 输出直接内置到控制单元
112 0
MOTOROLA MVME-147A 输出直接内置到控制单元
|
机器学习/深度学习 存储 并行计算
利用共享存储单元优化应用利用共享存储单元进行矩阵转
利用共享存储单元优化应用利用共享存储单元进行矩阵转
129 0
利用共享存储单元优化应用利用共享存储单元进行矩阵转
|
数据安全/隐私保护