PostgreSQL 多个数组聚合为一维数组加速(array_agg)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , array_agg , arragg


背景

多个数组聚合为一维数组,求PC。业务背景见:

《PostgreSQL APP海量FEED LOG实时质量统计CASE(含percentile_disc)》

由于PostgreSQL内置的聚合函数array_agg支持的数组聚合实际上是将多个数组聚合为多维数组。并不是一维数组。

例如:

postgres=# select array_agg(arr) from (values(array[1,2,3]), (array[4,5,6])) t(arr);  
     array_agg       
-------------------  
 {{1,2,3},{4,5,6}}  
(1 row)  

而实际上我们要的是一维数组的结果

{1,2,3,4,5,6}  

此时需要自定义一个聚合函数

create aggregate arragg (anyarray) (sfunc = array_cat, stype=anyarray, PARALLEL=safe);      

效果如下

postgres=# select arragg(arr) from (values(array[1,2,3]), (array[4,5,6])) t(arr);  
    arragg       
---------------  
 {1,2,3,4,5,6}  
(1 row)  

但是这个新加的聚合用到了array_cat,大量的memcpy导致性能并不好。

array_agg性能对比arragg

聚合100万个元素.

1、array_agg,耗时0.14秒

postgres=# explain (analyze,verbose,timing,costs,buffers) select array_agg(array[1,2,3,4,5,6,7,8,9,10]) from generate_series(1,100000);  
                                                                QUERY PLAN                                                                  
------------------------------------------------------------------------------------------------------------------------------------------  
 Aggregate  (cost=12.50..12.51 rows=1 width=32) (actual time=113.134..113.134 rows=1 loops=1)  
   Output: array_agg('{1,2,3,4,5,6,7,8,9,10}'::integer[])  
   ->  Function Scan on pg_catalog.generate_series  (cost=0.00..10.00 rows=1000 width=0) (actual time=53.585..66.200 rows=100000 loops=1)  
         Output: generate_series  
         Function Call: generate_series(1, 100000)  
 Planning time: 0.064 ms  
 Execution time: 143.075 ms  
(7 rows)  

2、arragg(use array_cat),耗时108.15秒

postgres=# explain (analyze,verbose,timing,costs,buffers) select arragg(array[1,2,3,4,5,6,7,8,9,10]) from generate_series(1,100000);  
                                                                QUERY PLAN                                                                  
------------------------------------------------------------------------------------------------------------------------------------------  
 Aggregate  (cost=12.50..12.51 rows=1 width=32) (actual time=108081.186..108081.186 rows=1 loops=1)  
   Output: arragg('{1,2,3,4,5,6,7,8,9,10}'::integer[])  
   ->  Function Scan on pg_catalog.generate_series  (cost=0.00..10.00 rows=1000 width=0) (actual time=11.121..81.467 rows=100000 loops=1)  
         Output: generate_series  
         Function Call: generate_series(1, 100000)  
 Planning time: 0.148 ms  
 Execution time: 108154.846 ms  
(7 rows)  

3、unnest聚合,耗时0.59秒

postgres=# explain (analyze,verbose,timing,costs,buffers) select array(select unnest(array[1,2,3,4,5,6,7,8,9,10]) from generate_series(1,100000));
                                                                    QUERY PLAN                                                                    
--------------------------------------------------------------------------------------------------------------------------------------------------
 Result  (cost=517.50..517.51 rows=1 width=32) (actual time=520.327..520.327 rows=1 loops=1)
   Output: $0
   InitPlan 1 (returns $0)
     ->  ProjectSet  (cost=0.00..517.50 rows=100000 width=4) (actual time=11.979..223.223 rows=1000000 loops=1)
           Output: unnest('{1,2,3,4,5,6,7,8,9,10}'::integer[])
           ->  Function Scan on pg_catalog.generate_series  (cost=0.00..10.00 rows=1000 width=0) (actual time=11.972..27.014 rows=100000 loops=1)
                 Output: generate_series
                 Function Call: generate_series(1, 100000)
 Planning time: 0.082 ms
 Execution time: 590.976 ms
(10 rows)

小结

array_cat构建的聚合耗时较多,性能优化提升空间明显。

array_agg代码参考:

src/backend/utils/adt/arrayfuncs.c

即使使用unnest再聚合,性能也比array_cat好很多。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
2月前
|
测试技术 PHP 开发者
PHP 数组查找:为什么 `isset()` 比 `in_array()` 快得多?
PHP 数组查找:为什么 `isset()` 比 `in_array()` 快得多?
|
6月前
|
人工智能 Java
Java 中数组Array和列表List的转换
本文介绍了数组与列表之间的相互转换方法,主要包括三部分:1)使用`Collections.addAll()`方法将数组转为列表,适用于引用类型,效率较高;2)通过`new ArrayList<>()`构造器结合`Arrays.asList()`实现类似功能;3)利用JDK8的`Stream`流式计算,支持基本数据类型数组的转换。此外,还详细讲解了列表转数组的方法,如借助`Stream`实现不同类型数组间的转换,并附带代码示例与执行结果,帮助读者深入理解两种数据结构的互转技巧。
357 1
Java 中数组Array和列表List的转换
|
6月前
|
JavaScript 前端开发 API
JavaScript中通过array.map()实现数据转换、创建派生数组、异步数据流处理、复杂API请求、DOM操作、搜索和过滤等,array.map()的使用详解(附实际应用代码)
array.map()可以用来数据转换、创建派生数组、应用函数、链式调用、异步数据流处理、复杂API请求梳理、提供DOM操作、用来搜索和过滤等,比for好用太多了,主要是写法简单,并且非常直观,并且能提升代码的可读性,也就提升了Long Term代码的可维护性。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
存储 Go 索引
go语言中的数组(Array)
go语言中的数组(Array)
196 67
|
6月前
|
移动开发 运维 供应链
通过array.some()实现权限检查、表单验证、库存管理、内容审查和数据处理;js数组元素检查的方法,some()的使用详解,array.some与array.every的区别(附实际应用代码)
array.some()可以用来权限检查、表单验证、库存管理、内容审查和数据处理等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
6月前
|
供应链 JavaScript 前端开发
通过array.every()实现数据验证、权限检查和一致性检查;js数组元素检查的方法,every()的使用详解,array.some与array.every的区别(附实际应用代码)
array.every()可以用来数据验证、权限检查、一致性检查等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
6月前
|
Web App开发 存储 前端开发
别再用双层遍历循环来做新旧数组对比,寻找新增元素了!使用array.includes和Set来提升代码可读性
这类问题的重点在于能不能突破基础思路,突破基础思路是从程序员入门变成中级甚至高级的第一步,如果所有需求都通过最基础的业务逻辑来做,是得不到成长的。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
6月前
|
数据采集 JavaScript 前端开发
JavaScript中通过array.filter()实现数组的数据筛选、数据清洗和链式调用,JS中数组过滤器的使用详解(附实际应用代码)
用array.filter()来实现数据筛选、数据清洗和链式调用,相对于for循环更加清晰,语义化强,能显著提升代码的可读性和可维护性。博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
11月前
|
人工智能 前端开发 JavaScript
拿下奇怪的前端报错(一):报错信息是一个看不懂的数字数组Buffer(475) [Uint8Array],让AI大模型帮忙解析
本文介绍了前端开发中遇到的奇怪报错问题,特别是当错误信息不明确时的处理方法。作者分享了自己通过还原代码、试错等方式解决问题的经验,并以一个Vue3+TypeScript项目的构建失败为例,详细解析了如何从错误信息中定位问题,最终通过解读错误信息中的ASCII码找到了具体的错误文件。文章强调了基础知识的重要性,并鼓励读者遇到类似问题时不要慌张,耐心分析。
298 5
|
11月前
|
存储 Java
Java“(array) <X> Not Initialized” (数组未初始化)错误解决
在Java中,遇到“(array) &lt;X&gt; Not Initialized”(数组未初始化)错误时,表示数组变量已被声明但尚未初始化。解决方法是在使用数组之前,通过指定数组的大小和类型来初始化数组,例如:`int[] arr = new int[5];` 或 `String[] strArr = new String[10];`。
331 2

相关产品

  • 云原生数据库 PolarDB
  • 推荐镜像

    更多