数据结构基础(16) --树与二叉树

简介: 树的基本术语 1.结点:{数据元素+若干指向子树的分支} 2.结点的度:分支的个数(子树的个数) 3.树的度:树中所有结点的度的最大值 4.叶子结点:度为零的结点 5.分支结点:度大于零的结点(包含根和中间结点) 6.(从根到结点的)路径:由从根到该结点所经分支和结点构成; 7.结点的层次:假设根结点的层次为1,则根的孩子为第2层,如果某节点在第L层,则其子树的根在L+1层。

树的基本术语

1.结点:{数据元素+若干指向子树的分支}

2.结点的度:分支的个数(子树的个数)

3.树的度:树中所有结点的度的最大值

4.叶子结点:度为零的结点

5.分支结点:度大于零的结点(包含根和中间结点)

6.(从根到结点的)路径:由从根到该结点所经分支和结点构成;

7.结点的层次:假设根结点的层次为1,则根的孩子为第2层,如果某节点在第L层,则其子树的根在L+1层。

8.树的深度:树中叶子结点所在的最大层次;

 

二叉树

    二叉树或为空树,或是由一个根结点加上两棵分别称为左子树和右子树的、互不交的二叉树组成。(树的度最大为2)



二叉树的重要性质:

性质1:在二叉树的第i层上至多有2^(i-1)个结点(i≥1);

性质2:深度为 k 的二叉树上至多含 (2^k)-1个结点(k≥1);

性质3:对任何一棵二叉树,若它含有n0 个叶子结点(0度结点)、n2 个度为 2的结点,则必存在关系式:n0 = n2+1。

 

两类特殊的二叉树:

  满二叉树:指的是深度为k且含有(2^k)-1个结点的二叉树。

  完全二叉树:树中所含的 n 个结点和满二叉树中编号为 1 至 n 的结点一一对应。(编号的规则为,由上到下,从左到右。如上图所示)

    完全二叉树的特点:

1.叶子节点出现在最后2层

2.对于任意结点,若其右分支下的子孙的最大层次为L,则左分支下的子孙的最大层次为L或L+1;

 

性质4:具有n个结点的完全二叉树的深度为[logn](向下取整)+1。

性质5:若对含 个结点的完全二叉树从上到下且从左至右进行 至 的编号,则对完全二叉树中任意一个编号为 的结点:

(1) 若 i=1,则该结点是二叉树的根,无双亲,否则,编号为 [i/2](向下取整)的结点为其双亲结点;
(2) 若 2i>n,则该结点无左孩子,否则,编号为 2i 的结点为其左孩子结点;
(3) 若 2i+1>n,则该结点无右孩子结点,否则,编号为2i+1 的结点为其右孩子结点。

 

二叉树的链式存储实现

说明:

    由于这篇博客仅仅是为了演示二叉树的理论, 因此代码所做的封装性以及可用性都不理想, 但由于在实际应用中, 也基本上不可能这样直接的使用二叉树, 因此也就没怎么优化他, 在此首先给大家说声抱歉;

 

二叉树节点构造

template <typename Type>
class TreeNode
{
    friend class BinaryTree<Type>;
//因为此处仅仅是为了演示, 因此将之定义为public
public:
    TreeNode(const Type &_data = Type(), TreeNode *_left = NULL, TreeNode *_right = NULL)
        : data(_data), leftChild(_left), rightChild(_right) { }

    Type data;
    TreeNode *leftChild;
    TreeNode *rightChild;
};

二叉树构造:

template <typename Type>
class BinaryTree
{
public:
    //二叉树可以进行的操作
    BinaryTree():root(NULL) {}
    bool isEmpty() const
    {
        return root == NULL;
    }
    //先序遍历
    void preOrder() const
    {
        return preOrder(root);
    }
    //中序遍历
    void inOrder() const
    {
        return inOrder(root);
    }
    //后续遍历
    void postOrder() const
    {
        return postOrder(root);
    }
    //层次遍历
    void levelOrder() const;

private:
    void preOrder(const TreeNode<Type> *rootNode) const;
    void inOrder(const TreeNode<Type> *rootNode) const;
    void postOrder(const TreeNode<Type> *rootNode) const;
    void visit(const TreeNode<Type> *node) const;

//因为此处仅仅是为了演示, 因此将之定义为public
public:
    TreeNode<Type> *root;
};

先(根)序的遍历算法:

1.若二叉树为空,则直接返回;

2.否则

    (1)访问根结点(visit);

    (2)先序遍历左子树;

    (3)先序遍历右子树;

//实现
template <typename Type>
void BinaryTree<Type>::preOrder(const TreeNode<Type> *subTree) const
{
    if (subTree != NULL)
    {
        visit(subTree);

        preOrder(subTree->leftChild);
        preOrder(subTree->rightChild);
    }
}

中(根)序的遍历算法:

1.若二叉树为空树,则空操作;

2.否则

    (1)中序遍历左子树;

    (2)访问根结点;

    (3)中序遍历右子树。

//实现
template <typename Type>
void BinaryTree<Type>::inOrder(const TreeNode<Type> *subTree)const
{
    if (subTree != NULL)
    {
        inOrder(subTree->leftChild);
        visit(subTree);
        inOrder(subTree->rightChild);
    }
}

后(根)序的遍历算法:

1.若二叉树为空树,则空操作;

2.否则

    (1)后序遍历左子树;

    (2)后序遍历右子树;

    (3)访问根结点。

//实现
template <typename Type>
void BinaryTree<Type>::postOrder(const TreeNode<Type> *subTree)const
{
    if (subTree != NULL)
    {
        postOrder(subTree->leftChild);
        postOrder(subTree->rightChild);
        visit(subTree);
    }
}

层次遍历算法与visit操作:

template <typename Type>
void BinaryTree<Type>::levelOrder() const
{
    std::queue< TreeNode<Type>* > queue;
    queue.push(root);

    while (!queue.empty())
    {
        TreeNode<Type> *currentNode = queue.front();
        queue.pop();

        visit(currentNode);
        if (currentNode->leftChild != NULL)
            queue.push(currentNode->leftChild);
        if (currentNode->rightChild != NULL)
            queue.push(currentNode->rightChild);
    }
}
template <typename Type>
void BinaryTree<Type>::visit(const TreeNode<Type> *currentNode) const
{
    cout << currentNode->data << ' ';
}

二叉树构造与运用示例

构造一颗如下的二叉树:

//代码如下
int main()
{
    BinaryTree<char> tree;
    TreeNode<char> addition('+'), subtraction('-'), multiplies('*'), divides('/');
    TreeNode<char> a('A'), b('B'), c('C'), d('D'), e('E');

    tree.root = &addition;
    addition.leftChild = &subtraction;
    addition.rightChild = &e;
    subtraction.leftChild = &multiplies;
    subtraction.rightChild = &d;
    multiplies.leftChild = ÷s;
    multiplies.rightChild = &c;
    divides.leftChild = &a;
    divides.rightChild = &b;

    cout << "preOrder: ";
    tree.preOrder();
    cout << endl;
    cout << "inOrder: " ;
    tree.inOrder();
    cout << endl;
    cout << "postOrder: ";
    tree.postOrder();
    cout << endl;

    cout << "level Order";
    tree.levelOrder();
    cout << endl;
    
    return 0;
}

遍历算法的应用举例

    1.统计二叉树中叶子结点的个数(先序遍历)

    2.求二叉树的深度(后序遍历)

    3.复制二叉树(后序遍历)

目录
相关文章
|
29天前
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
47 0
|
22天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
43 5
|
29天前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
81 4
|
1月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
75 16
|
1月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
129 8
|
29天前
|
算法
数据结构之文件系统模拟(树数据结构)
本文介绍了文件系统模拟及其核心概念,包括树状数据结构、节点结构、文件系统类和相关操作。通过构建虚拟环境,模拟文件的创建、删除、移动、搜索等操作,展示了文件系统的基本功能和性能。代码示例演示了这些操作的具体实现,包括文件和目录的创建、移动和删除。文章还讨论了该算法的优势和局限性,如灵活性高但节点移除效率低等问题。
45 0
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
30 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
34 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
2月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
38 0
|
2月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆