关于 解决MySQL数据库主从复制延迟的问题

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 像Facebook、开心001、人人网、优酷、豆瓣、淘宝等高流量、高并发的网站,单点数据库很难支撑得住,WEB2.

Facebook开心001人人网优酷豆瓣淘宝等高流量、高并发的网站,单点数据库很难支撑得住,WEB2.0类型的网站中使用MySQL的居多,要么用MySQL自带的MySQL NDB Cluster(MySQL5.0及以上版本支持MySQL NDB Cluster功能),或者用MySQL自带的分区功能(MySQL5.1及以上版本支持分区功能),我所知道的使用这两种方案的很少,一般使用主从复制,再加上MySQL Proxy实现负载均衡、读写分离等功能,在使用主从复制的基础上,再使用垂直切分及水平切分;或者不使用主从复制,完全使用垂直切分加上水平切分再加上类似Memcached的系统也可以解决问题。

1.优酷的经验
数据库采用水平扩展,主从复制,随着从数据库的增多,复制延迟越来越厉害,最终无法忍受。
最终还是采用数据库的sharding,把一组用户相关的表和数据放到一组数据库上。
使用SSD来优化mysql的I/O,性能提升明显,每块16G,6块SSD做RAID。
数据库的类型选用MYISAM
数据库的拆分策略,先纵向按照业务或者模块拆分。对于一些特别大的表,再采用垂直拆分
根据用户进行分片,尽可能不要跨篇查询。如果确实要跨片查询,可以考虑搜索的方案,先索引再搜索。
分布式的数据库方案太复杂,否掉。

优酷使用的是数据库分片技术,而抛弃了由于数据量的越来越多导致复制延迟的问题。按照user_id进行分片,这样必须有一个全局的表来管理用户与shard的关系,根据user_id可以得到share_id,然后根据share_id去指定的分片查询指定的数据。

假如此表的表名为sharding_manager,如果网站的用户数太多,比如千万级的或甚至更大比如亿级的用户,此时此表也许也会成为一个瓶颈,因为查询会非常频繁,所有的动态请求都要读此表,这时可以用其它的解决方案,比如用Memcached、Tokyo Cabinet、Berkeley DB或其它的性能更高的方案来解决。

具体怎么定位到哪台db服务器,定位到哪个数据库,定位到哪个shard(就是userN,msgN,videoN),优酷网的架构文档中说得不是很仔细,这里只能猜测一下了。

根据优酷的架构图,一共有2台db服务器,每台db服务器有2个数据库,每个数据库有3个shard,这样一共是2 * 2 * 3 = 12个shard。

user_id一般是自增型字段,用户注册的时候可以自动生成,然后看有几台db服务器,假如有m台db服务器,则用 user_id % m便可以分配一台db服务器(例如0对应100,1对应101,以此类推,字段mysql_server_ip的值确定),假设每台服务器有n个数据库,则用user_id % n可以定位到哪个数据库(字段database_name的值确定),假设每个数据库有i个shard,则用user_id % i可以定位到哪个shard(字段shard_id的值确定),这样就可以进行具体的数据库操作了。

user_id share_id mysql_server_ip database_name
101      2           192.168.1.100   shard_db1
105      0           192.168.1.100   shard_db2
108      0           192.168.1.101   shard_db3(或shard_db1)
110      1           192.168.1.101   shard_db4(或shard_db2)

如上述user_id为101的用户,连接数据库服务器192.168.1.100,使用其中的数据库为shard_db1,使用其中的表系列为user2,msg2,video2

如果上述的m,n,i发生变化,比如网站的用户不断增长,需要增加db服务器,此时则需要进行数据库迁移,关于迁移,参见这儿

因为表位于不同的数据库中,所以不同的数据库中表名可以相同
server1(192.168.1.100)
shard_db1
user0
msg0
video0
user1
msg1
video1
...
userN
msgN
videoN
shard_db2
user0
msg0
video0
user1
msg1
video1
...
userN
msgN
videoN

因为表位于不同的数据库服务器中,所以不同的数据库服务器中的数据库名可以相同
server2(192.168.1.101)
shard_db3(这里也可以用shard_db1)
user0
msg0
video0
user1
msg1
video1
...
userN
msgN
videoN
shard_db4(这里也可以用shard_db2)
user0
msg0
video0
user1
msg1
video1
...
userN
msgN
videoN

2.豆瓣的经验
由于从主库到辅库的复制需要时间
更新主库后,下一个请求往往就是要读数据(更新数据后刷新页面)
从辅库读会导致cache里存放的是旧数据(不知道这个cache具体指的是什么,如果是Memcached的话,如果更新的数据的量很大,难道把所有更新过的数据都保存在Memcached里面吗?)
解决方法:更新数据库后,在预期可能会马上用到的情况下,主动刷新缓存
不完美,but it works

豆瓣后来改为双MySQL Master+Slave说是能解决Replication Delay的问题,不知道是怎么解决的,具体不太清楚。

3.Facebook的经验

下面一段内容引用自www.dbanotes.net
大量的 MySQL + Memcached 服务器,布署简示:
California (主 Write/Read)............. Virginia (Read Only)
主数据中心在 California ,远程中心在 Virginia 。这两个中心网络延迟就有 70ms,MySQL 数据复制延迟有的时候会达到 20ms. 如果要让只读的信息从 Virginia 端发起,Memcached 的 Cache 数据一致性就是个问题。

1 用户发起更新操作,更名 "Jason" 到 "Monkey" ;
2 主数据库写入 "Monkey",删除主端 Memcached 中的名字值,但Virginia 端 Memcached 不删;(这地方在 SQL 解析上作了一点手脚,把更新的操作"示意"给远程);
3 在 Virginia 有人查看该用户 Profile ;
4 在 Memcached 中找到键值,返回值 "Jason";
5 复制追上更新 Slave 数据库用户名字为 "Monkey",删除 Virginia Memcached 中的键值;
6 在 Virginia 有人查看该用户 Profile ;
7 Memcache 中没找到键值,所以从 Slave 中读取,然后得到正确的 "Monkey" 。
Via

从上面3可以看出,也仍然存在数据延迟的问题。同时master中数据库更新的时候不更新slave中的memcached,只是给slave发个通知,说数据已经改变了。

那是不是可以这样,当主服务器有数据更新时,立即更新从服务器中的Memcached中的数据,这样即使有延迟,但延迟的时间应该更短了,基本上可以忽略不计了。

4.Netlog的经验

对于比较重要且必须实时的数据,比如用户刚换密码(密码写入 Master),然后用新密码登录(从 Slaves 读取密码),会造成密码不一致,导致用户短时间内登录出错。所以在这种需要读取实时数据的时候最好从 Master 直接读取,避免 Slaves 数据滞后现象发生。还好,需要读取实时数据的时候不多,比如用户更改了邮件地址,就没必要马上读取,所以这种 Master-Slaves 架构在多数情况下还是有效的。

 

 

 = = =

 

http://blogold.chinaunix.net/u3/116107/showart_2364757.html

 

 = = =

 

 

0_php_whc 17:28:20
http://koda.javaeye.com/blog/682547
0_php_whc 17:29:51
http://blog.csdn.net/MPU/archive/2010/06/23/5689225.aspx
0_php_whc 17:29:58
http://apps.hi.baidu.com/share/detail/17180907
0_php_whc 17:32:19
我们现在采用的是
4.Netlog的经验

对于比较重要且必须实时的数据,比如用户刚换密码(密码写入 Master),然后用新密码登录(从 Slaves 读取密码),会造成密码不一致,导致用户短时间内登录出错。所以在这种需要读取实时数据的时候最好从 Master 直接读取,避免 Slaves 数据滞后现象发生。还好,需要读取实时数据的时候不多,比如用户更改了邮件地址,就没必要马上读取,所以这种 Master-Slaves 架构在多数情况下还是有效的。

 = = =

研究第四种

 

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
SQL 监控 关系型数据库
MySQL 延迟从库介绍
本文介绍了MySQL中的延迟从库功能,详细解释了其工作原理及配置方法。延迟从库允许从库在主库执行完数据变更后延迟一段时间再同步,主要用于快速恢复误操作的数据。此外,它还可用于备份、离线查询及数据合规性需求。通过合理配置,可显著提升数据库系统的稳定性和可靠性。
|
2天前
|
监控 关系型数据库 MySQL
深入了解MySQL主从复制:构建高效稳定的数据同步架构
深入了解MySQL主从复制:构建高效稳定的数据同步架构
17 1
|
26天前
|
存储 关系型数据库 MySQL
分析MySQL主从复制中AUTO_INCREMENT值不一致的问题
通过对 `AUTO_INCREMENT`不一致问题的深入分析和合理应对措施的实施,可以有效地维护MySQL主从复制环境中数据的一致性和完整性,确保数据库系统的稳定性和可靠性。
61 6
|
27天前
|
存储 关系型数据库 MySQL
分析MySQL主从复制中AUTO_INCREMENT值不一致的问题
通过对 `AUTO_INCREMENT`不一致问题的深入分析和合理应对措施的实施,可以有效地维护MySQL主从复制环境中数据的一致性和完整性,确保数据库系统的稳定性和可靠性。
47 1
|
28天前
|
关系型数据库 MySQL Java
MySQL主从复制实现读写分离
MySQL主从复制(二进制日志)、 Sharding-JDBC实现读写分离
MySQL主从复制实现读写分离
|
2月前
|
SQL 关系型数据库 MySQL
说一下MySQL主从复制的原理?
【8月更文挑战第24天】说一下MySQL主从复制的原理?
52 0
|
2月前
|
存储 关系型数据库 MySQL
实战!MySQL主从复制一键搭建脚本分享
实战!MySQL主从复制一键搭建脚本分享
36 2
|
2月前
|
SQL 关系型数据库 MySQL
在Linux中,mysql 如何减少主从复制延迟?
在Linux中,mysql 如何减少主从复制延迟?
|
2月前
|
SQL 监控 关系型数据库
MySQL 延迟从库介绍
我们都知道,MySQL 主从延迟是一件很难避免的情况,从库难免会偶尔追不上主库,特别是主库有大事务或者执行 DDL 的时候。MySQL 除了这种正常从库外,还可以设置延迟从库,顾名思义就是故意让从库落后于主库多长时间,本篇文章我们一起来了解下 MySQL 中的延迟从库。
43 0
|
2月前
|
关系型数据库 MySQL 网络安全
MySQL主从复制详细教程
配置MySQL的主从复制是一个细致的过程,需要仔细遵循上述步骤进行。一旦配置完成并运行正常,主从复制将大大提高数据库的可用性和读写性能。在操作过程中,务必保持谨慎,确保数据的一致性和安全性。
169 0

热门文章

最新文章