数据仓库专题(23):总线矩阵的另类应用-Drill Down into a More Detailed Bus Matrix

简介: 一、前言 Many of you are already familiar with the data warehouse bus architecture and matrix given their central role in building architected data marts.

一、前言

Many of you are already familiar with the data warehouse bus architecture and matrix given their central role in building architected data marts. The corresponding bus matrix identifies the key business processes of an organization, along with their associated dimensions. Business processes (typically corresponding to major source systems) are listed as matrix rows, while dimensions appear as matrix columns. The cells of the matrix are then marked to indicate which dimensions apply to which processes.

In a single document, the data warehouse team has a tool for planning the overall data warehouse, identifying the shared dimensions across the enterprise, coordinating the efforts of separate implementation teams, and communicating the importance of shared dimensions throughout the organization. We firmly believe drafting a bus matrix is one of the key initial tasks to be completed by every data warehouse team after soliciting the business’ requirements.

二、面临问题

While the matrix provides a high-level overview of the data warehouse presentation layer “puzzle pieces” and their ultimate linkages, it is often helpful to provide more detail as each matrix row is implemented. Multiple fact tables often result from a single business process. Perhaps there’s a need to view business results in a combination of transaction, periodic snapshot or accumulating snapshot perspectives. Alternatively, multiple fact tables are often required to represent atomic versus more summarized information or to support richer analysis in a heterogeneous product environment.

三、解决方案

We can alter the matrix’s “grain” or level of detail so that each row represents a single fact table (or cube) related to a business process. Once we’ve specified the individual fact table, we can supplement the matrix with columns to indicate the fact table’s granularity and corresponding facts (actual, calculated or implied). Rather than merely marking the dimensions that apply to each fact table, we can indicate the dimensions’ level of detail (such as brand or category, as appropriate, within the product dimension column).

 四、总结

The resulting embellished matrix provides a roadmap to the families of fact tables in your data warehouse. While many of us are naturally predisposed to dense details, we suggest you begin with the more simplistic, high-level matrix and then drill-down into the details as each business process is implemented. Finally, for those of you with an existing data warehouse, the detailed matrix is often a useful tool to document the “as is” status of a more mature warehouse environment.


作者:张子良
出处:http://www.cnblogs.com/hadoopdev
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

相关文章
|
供应链 架构师 BI
数仓实践:总线矩阵架构设计1
数仓实践:总线矩阵架构设计1
2134 0
数仓实践:总线矩阵架构设计1
|
存储 算法 图计算
TuGraph Analytics图计算快速上手之弱联通分量算法
TuGraph Analytics是蚂蚁集团近期开源的分布式流式图计算,目前广泛应用在蚂蚁集团的金融、社交、风控等诸多领域。
|
SQL 消息中间件 存储
【数据计算实践】如何使用Datpahin实现一个流批一体任务
以计算促销活动期间GMV为例,介绍Dataphin如何基于Flink流批一体的任务开发流程,实现实时数据处理。
1393 0
【数据计算实践】如何使用Datpahin实现一个流批一体任务
|
自然语言处理 数据可视化 大数据
谈谈如何从数据湖(Data Lake)架构转向数据网格(Data Mesh)架构
尽管数据网格实践被应用在有些客户中,但企业规模性的采用仍有很长的路要走。
谈谈如何从数据湖(Data Lake)架构转向数据网格(Data Mesh)架构
|
存储 传感器 SQL
MRS IoTDB时序数据库的架构设计与实现(总)
MRS IoTDB是FusionInsight MRS大数据套件最新推出的时序数据库产品,其领先的设计理念在时序数据库领域展现出越来越强大的竞争力,得到了越来越多的用户认可。为了大家更好地了解MRS IoTDB,本文将会系统地为大家介绍MRS IoTDB的来龙去脉和功能特性,重点为大家介绍MRS IoTDB时序数据库的整体架构设计与实现,现在来为大家介绍MRS IoTDB的整体架构设计。
762 0
MRS IoTDB时序数据库的架构设计与实现(总)
|
存储 算法 数据管理
MRS IoTDB时序数据库的架构设计与实现(下)
MRS IoTDB集群是完全对等的分布式架构,既基于Raft协议避免了单点故障问题,又通过Multi-Raft协议避免了单一Raft共识组带来的单点性能问题,同时对分布式协议的底层通讯、并发控制和高可用机制做了进一步优化。
281 0
MRS IoTDB时序数据库的架构设计与实现(下)
|
存储 传感器 物联网
MRS IoTDB时序数据库的架构设计与实现(中)
本文主要为大家介绍MRS IoTDB的单机架构。MRS IoTDB主要聚焦在IoT物联网领域的设备传感器测点值的实时处理,因此,MRS IoTDB的基础架构设计以设备、传感器为核心概念,同时为了便于用户使用和IoTDB管理时间序列数据,增加了存储组的概念。
347 0
MRS IoTDB时序数据库的架构设计与实现(中)
|
存储 传感器 机器学习/深度学习
MRS IoTDB时序数据库的架构设计与实现(上)
MRS IoTDB是近年来最新推出的时序数据库产品,其领先的设计理念在时序数据库领域展现出越来越强大的竞争力,得到了越来越多的用户认可。为了大家更好地了解MRS IoTDB,本文将会系统地为大家介绍MRS IoTDB的来龙去脉和功能特性,重点为大家介绍MRS IoTDB时序数据库的架构设计与实现,这次先为大家介绍MRS IoTDB的整体架构设计,后续系列文章会为大家逐步展开细节介绍。
448 0
MRS IoTDB时序数据库的架构设计与实现(上)
|
架构师 数据管理 BI
数仓实践:总线矩阵架构设计2
数仓实践:总线矩阵架构设计2
1271 0