利用ISCSI存储技术构建IP存储网络(安全篇)

简介:

前面的文章中,介绍了如何搭建一个简单的iSCSI网络存储系统,作为iSCSI initiator的客户端主机可以任意连接和使用iSCSI target共享出来的所有磁盘和分区,而在很多时候,通过授权认证连接共享磁盘或分区是必须的,例如:只允许客户端主机A连接target共享出来的磁盘分区一,而客户端主机B只允许连接target共享出来的磁盘分区二等等,在这种情况下,就需要在iSCSI target主机上进行授权设定了。
iSCSI 在授权访问和安全管理方面有着不错优势,它能够使用以主机为基础,也就是以 IP地址为基础来设定允许或拒绝存取;也可以通过用户账号密码认证来完成允许或拒绝存取的设定。
         下面通过一个应用案例来讲述iSCSI授权获取磁盘资源的方法。
有一个PC构架的iSCSI target服务器,共享的硬盘标识为/dev/sdc,大小10G,然后此硬盘划分了两个分区/dev/sdc1和/dev/sdc2,分别将/dev/sdc1共享给一个IP地址为192.168.12.136的windows客户端主机,将/dev/sdc2共享给一个IP地址为192.168.12.26的Linux客户端主机,iSCSI target服务器的IP地址为192.168.12.246。接下来通过IP认证和用户密码认证两种方式来讲述如何实现这种需求。

一、Initiator主机以IP认证方式获取iSCSI Target资源
 此种方式配置非常简单,只需在iSCSI target服务器上修改两个文件即可,首先在iscsitarget主目录/etc/iet目录下找到ietd.conf文件,然后添加如下内容:
Target iqn.2000-04.net.ixdba:sdc1
Lun 0 Path=/dev/sdc1,Type=fileio
Target iqn.2002-04.net.ixdba:sdc2
Lun 0 Path=/dev/sdc2,Type=fileio
在ietd.conf文件中,定义了两个Target,每个Target分别添加了对应的磁盘分区,接着修改/etc/iet/initiators.allow文件,这个文件是定义Initiator主机对target服务器的访问规则,作用类似与Linux操作系统中的/etc/hosts.allow文件。修改完成的initiators.allow文件内容如下:
iqn.2000-04.net.ixdba:sdc1 192.168.12.136
iqn.2002-04.net.ixdba:sdc2 192.168.12.26
修改完成,重启iscsi-target服务:
[root@iscsi-target iet]# service iscsi-target restart
Stopping iSCSI Target:                                     [  OK  ]
Starting iSCSI Target:                                     [  OK  ]
接着,在IP地址为192.168.12.26的Linux Initiator主机上执行如下操作:
[root@ Initiator iscsi]# /etc/init.d/iscsi restart
[root@ Initiator iscsi]#iscsiadm -m discovery -t sendtargets -p 192.168.12.246  
192.168.12.246:3260,1 iqn.2002-04.net.ixdba:sdc2
[root@ Initiator iscsi]#fdisk -l
Disk /dev/sda: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sda1   *           1          13      104391   83  Linux
/dev/sda2              14       38913   312464250   8e  Linux LVM

Disk /dev/sdb: 5724 MB, 5724794880 bytes
177 heads, 62 sectors/track, 1018 cylinders
Units = cylinders of 10974 * 512 = 5618688 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1        1018     5585735   83  Linux
通过重启iscsi服务,重新执行Target发现,Linux系统已经识别了Target共享出来的磁盘分区,其中“/dev/sdb: 5724 MB”就是iSCSI共享磁盘,接下来就可以在linux上管理和使用这个共享磁盘了。
最后,登录windows系统,打开Microsoft iSCSI Initiator,添加iSCSI共享磁盘即可,这个操作很简单,这里不在详述。

二、Initiator主机以密码认证方式获取iSCSI Target资源

iSCSI Target使用账号密码方式认证分成两阶段: 
第一阶段是Discovery查询认证所使用的账号和密码(即SendTargets 用的)。 
第二阶段是登入Target / iqn / Lun时所使用的账号密码(即Login登录时用的)。
此种方式在配置方面稍复杂一些,需要在Initiator主机和iSCSI Target服务器上做简单配置,下面分步介绍。
 

1 配置iSCSI Target
首先修改/etc/iet/initiators.allow文件,打开所有权限,修改后的内容如下:
#iqn.2000-04.net.ixdba:sdc1 192.168.12.136
#iqn.2002-04.net.ixdba:sdc2 192.168.12.26
ALL ALL
 接着修改/etc/iet/ietd.conf文件,修改后的内容如下:
IncomingUser  discovery.auth  discoverysecret

Target iqn.2000-04.net.ixdba:sdc1
IncomingUser  login.windows.auth  windowssecret
Lun 0 Path=/dev/sdc1,Type=fileio
 
Target iqn.2002-04.net.ixdba:sdc2
IncomingUser  login.linux.auth linuxsecret
Lun 0 Path=/dev/sdc2,Type=fileio
 其中,第一个“IncomingUser”是个全局参数,用来指定Discovery查询认证所使用的账号和密码,必须与initiator主机中设定的用户名密码一致。第二个和第三个“IncomingUser”选项包含在对应的Target中,用来指定windows和Linux客户端主机登录Target/iqn/Lun时所使用的账号密码。也必须与initiator主机中设定的用户名密码一致。
 所有配置完毕以后,重启iscsitarget服务。
 

2 配置Linux Initiator主机
修改/etc/iscsi/iscsid.conf文件,添加如下选项: 
#以下三个是针对login的
node.session.auth.authmethod = CHAP     #表示在login时启用CHAP验证。
node.session.auth.username = login.linux.auth    #验证用户名称,可以是任意字符,但必须与target端IncomingUse配置的名字一致。
node.session.auth.password = linuxsecret     #验证密码,必须与target端对应的IncomingUse选项设置的密码一致。

#以下三个是针对discovery的 
discovery.sendtargets.auth.authmethod = CHAP     #表示discovery时启用CHAP验证。
discovery.sendtargets.auth.username = discovery.auth  #验证用户名称,可以是任意字符,但必须与target端IncomingUse配置的名称一致。
discovery.sendtargets.auth.password = discoverysecret #验证密码,必须与target端对应的IncomingUse选项设置的密码一致。
配置完毕,重启initiator,重新执行Discovery查询,操作如下:
[root@ Initiator iscsi ]#/etc/init.d/iscsi restart
[root@ Initiator iscsi ]# iscsiadm -m discovery -t sendtargets -p 192.168.12.246
192.168.12.246:3260,1 iqn.2000-04.net.ixdba:sdc1
192.168.12.246:3260,1 iqn.2002-04.net.ixdba:sdc2
从查询结果可知,initiator查询到了两个Target,最后执行fdisk操作:
[root@ Initiator iscsi ]# fdisk -l
Disk /dev/sda: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sda1   *           1          13      104391   83  Linux
/dev/sda2              14       38913   312464250   8e  Linux LVM

Disk /dev/sdb: 5724 MB, 5724794880 bytes
177 heads, 62 sectors/track, 1018 cylinders
Units = cylinders of 10974 * 512 = 5618688 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1        1018     5585735   83  Linux
从fdisk的输出结果可知,Linux initiator已经成功连接了ISCSI共享磁盘,而“/dev/sdb: 5724 MB”就是识别的硬盘标识和大小。
 

3 配置windows Initiator主机
 配置windows Initiator主机的方法在前面章节已经有过介绍,这里仅仅讲述不同的地方,首先打开Microsoft iSCSI Initiator,选择第二个分页标签“Discovery”,然后在“Target Portals”部分点击“Add”按钮,跳出“Add Target Portal”窗口,在此窗口中填写iSCSI Target的IP地址和端口,填写完毕,点击“Advanced”按钮,如图1所示:

图1
 

在此界面下,选中“CHAP logon information”标签,然后填写Discovery查询认证所使用的账号和密码。填写完毕点击“确定”按钮。
接着选择第三个分页标签“Targets”,此时Initiator已经从iSCSI Target端查询到了两个Target,选中第一个名为“Target iqn.2000-04.net.ixdba:sdc1 ”的target,点击“Log On”按钮,然后在弹出的“Log On to Target”窗口中点击“Advanced”按钮,如图2所示:

图2
 

在此界面下,选中“CHAP logon information”标签,然后填写客户端登录iSCSI Target / iqn / Lun时所使用的账号密码。填写完毕点击“确定”按钮。
 此时,名为“Target iqn.2000-04.net.ixdba:sdc1 ”的target已经处于“Connectd”状态,即Microsoft iSCSI Initiator已经连接上了iSCSI Target服务器共享出来的磁盘分区,最后,查看windows磁盘管理器,可以看到共享硬盘分区,如图3所示:

图3
 

到这里为止,windows已经可以对这个iSCSI磁盘进行分区、格式化等操作了。
 












本文转自南非蚂蚁51CTO博客,原文链接: http://blog.51cto.com/ixdba/579286,如需转载请自行联系原作者




相关文章
|
2月前
|
前端开发 JavaScript 开发者
JavaScript:构建动态网络的引擎
JavaScript:构建动态网络的引擎
|
4月前
|
机器学习/深度学习 算法 量子技术
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
111 4
GQNN框架:让Python开发者轻松构建量子神经网络
|
1月前
|
网络协议 Linux 虚拟化
配置VM网络:如何设定静态IP以访问主机IP和互联网
以上就是设定虚拟机网络和静态IP地址的基本步骤。需要注意的是,这些步骤可能会因为虚拟机软件、操作系统以及网络环境的不同而有所差异。在进行设定时,应根据具体情况进行调整。
281 10
|
2月前
|
存储 算法 安全
即时通讯安全篇(三):一文读懂常用加解密算法与网络通讯安全
作为开发者,也会经常遇到用户对数据安全的需求,当我们碰到了这些需求后如何解决,如何何种方式保证数据安全,哪种方式最有效,这些问题经常困惑着我们。52im社区本次着重整理了常见的通讯安全问题和加解密算法知识与即时通讯/IM开发同行们一起分享和学习。
283 9
|
2月前
|
人工智能 安全 网络安全
从不确定性到确定性,“动态安全+AI”成网络安全破题密码
2025年国家网络安全宣传周以“网络安全为人民,靠人民”为主题,聚焦AI安全、个人信息保护等热点。随着AI技术滥用加剧,智能化攻击频发,瑞数信息推出“动态安全+AI”防护体系,构建“三层防护+两大闭环”,实现风险前置识别与全链路防控,助力企业应对新型网络威胁,筑牢数字时代安全防线。(238字)
155 1
|
2月前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。
|
1月前
|
机器学习/深度学习 分布式计算 Java
Java与图神经网络:构建企业级知识图谱与智能推理系统
图神经网络(GNN)作为处理非欧几里得数据的前沿技术,正成为企业知识管理和智能推理的核心引擎。本文深入探讨如何在Java生态中构建基于GNN的知识图谱系统,涵盖从图数据建模、GNN模型集成、分布式图计算到实时推理的全流程。通过具体的代码实现和架构设计,展示如何将先进的图神经网络技术融入传统Java企业应用,为构建下一代智能决策系统提供完整解决方案。
295 0
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
460 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
3月前
|
存储 监控 Linux
Dell OpenManage Enterprise 4.5 - Dell 服务器、存储和网络设备集中管理软件
Dell OpenManage Enterprise 4.5 - Dell 服务器、存储和网络设备集中管理软件
99 0