图解Skip List——本质是空间换时间的数据结构,在lucene的倒排列表,bigtable,hbase,cassandra的memtable,redis中sorted set中均用到-阿里云开发者社区

开发者社区> 数据库> 正文

图解Skip List——本质是空间换时间的数据结构,在lucene的倒排列表,bigtable,hbase,cassandra的memtable,redis中sorted set中均用到

简介:

Skip List的提出已有二十多年[Pugh, W. (1990)],却依旧应用广泛(Redis、LevelDB等)。作为平衡树(AVL、红黑树、伸展树、树堆)的替代方案,虽然它性能不如平衡树稳定,但是在实现难度上却很有优势。它的查询、插入、删除等主要操作时间复杂度也都是Θ(lgn),空间复杂度是Θ(n)

一个Skip List的结构如下图,除了数据域,每个节点还包括1个或多个域用来保存后续节点的位置。

跳跃表

从结构上看,Skip List通过增加层数,节点上可以带有更多的信息,通过这些信息可以直接访问更远的节点(这 也是Skip List精髓所在),就像跳过去一样,所以取名叫Skip List(跳表)。

Skip List查询

查询操作很简单,比如我们要找图中节点key为20的节点。

  • 我们首先获取到头节点,从头检点的最高层开始(节点中的点表示指向节点的指针),下一个节点是17, 很明显20>17所以应该在后面。继续往后结果是NULL那说明后面没有要找的节点了。
  • 跳到下一层继续往后是2520<25说明后面也没有我们要找的节点了。
  • 再跳到下一层,往后就找到我们要的节点了。如果到最下面一层还找不到,那这个节点就肯定不在表中了(因为最低层包含所有节点)。

跳跃表查找

Skip List插入

插入操作稍微复杂, 首先我们要找到插入位置,怎么找我们刚才已经描述过了。如下图所示,插入key为10的节点,插入点应该是节点9和节点12之间(紫色的线表示要更新的指向)。然后是插入节点10,其实就是链表的逐层插入。 跳跃表插入

这里的需要注意是,逐层插入需要知道节点在每一层的位置,如在level-2中,节点10前面应该是头结点,而后面应该是节点17。 因为查询操作得到的只是最后位置,所以通常需要一个临时的空间来记录这些信息。如果节点的高度超过超过了Skip List的最大层数,那么Skip List的层数相应的需要升高。如节点10的高度是4的话,根据Skip List的结构特点,那么层数需要提高到level-3。

节点高度与Skip List的最大层数

理想的SkipList结构(如图一)是第一层有所有的节点,第二层只有1/2的节点,且是均匀间隔的,第三 层是1/4的节点,且是均匀间隔的...,那么理想的层数是lgnlgn。

每一次插入一个新节点时,最好的做法就是根据当前表的结构得到一个合适的高度,插入后可以让Skip List的尽量的接近理想的结构,但是实现上这会非常的复杂。

Pugh论文中提出的方法是根据概率随机为新节点生成一个高度,具体的算法如下:

  • 给定一个概率pp, 产生一个[0,1)[0,1) 之间的随机数
  • 如果这个随机数小于pp,则高度加11
  • 重复以上动作,直到随机数大于概率pp

虽然随机生成的高度会打破理想的结构,Pugh在论文中证明,这种结构依然有非常高概率可以使得时间复杂度为Θ(lgn)Θ(lgn)。

通常我们还会约束Skip List的最大层数,公式:maxLevel=log1/pnmaxLevel=log1/pn,其中n表示节点总数。 根据Pugh论文中的结论,p为1/2或者1/4时,整体性能会比较好。(当p=1/2时,确定节点高度有的地方称为抛硬币的方法)。

Skip List删除

删除操作跟插入操作类似。  跳跃表删除

有兴趣可以看看Pugh论文!


转自:http://www.zkt.name/skip-list/









本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6409146.html,如需转载请自行联系原作者


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
数据库
使用钉钉扫一扫加入圈子
+ 订阅

分享数据库前沿,解构实战干货,推动数据库技术变革

其他文章