pandas 透视表 pivot_table

简介:


The function pandas.pivot_table can be used to create spreadsheet-style pivot tables.

It takes a number of arguments

    data: A DataFrame object
    values: a column or a list of columns to aggregate
    index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
    columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
    aggfunc: function to use for aggregation, defaulting to numpy.mean

    

复制代码
import numpy as np
import pandas as pd
import datetime

df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
                   'B': ['A', 'B', 'C'] * 8,
                   'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
                   'D': np.random.randn(24),
                   'E': np.random.randn(24),
                   'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
                        [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
                        

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values='D', aggfunc=np.sum)

pd.pivot_table(df, index=['C'], columns=['A', 'B'], values='D', aggfunc='sum')

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc=np.sum)

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc=[np.sum])

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc={'D':len,'E':np.sum})

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc={'D':len,'E':[np.sum, np.mean]})

pd.pivot_table(df, index=pd.Grouper(freq='M', key='F'), columns='C', values='D', aggfunc=np.sum) # 有点类似 resample
复制代码

 



 本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/5597314.html,如需转载请自行联系原作者

相关文章
|
5月前
|
SQL 数据可视化 数据挖掘
Pandas透视表及应用(二)
这个文本是关于使用Pandas进行数据分析的教程,主要关注会员数据的处理和业务指标的计算。
|
5月前
|
监控 数据可视化 数据挖掘
Pandas透视表及应用(一)
数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。
|
6月前
|
索引 Python
使用Python的Pandas库进行数据透视表(pivot table)操作
使用Python Pandas进行数据透视表操作包括:安装Pandas库,导入库,创建或读取数据,如`pd.DataFrame()`或从文件读取;然后使用`pd.pivot_table()`创建透视表,指定数据框、行索引、列索引和值,例如按姓名和科目分组计算平均分;查看结果通过打印数据透视表;最后可使用`to_csv()`等方法保存到文件。这为基础步骤,可按需求调整参数实现更多功能。
297 2
|
6月前
|
索引 Python
如何使用Python的Pandas库进行数据透视表(pivot table)操作?
使用Pandas在Python中创建数据透视表的步骤包括:安装Pandas库,导入它,创建或读取数据(如DataFrame),使用`pd.pivot_table()`指定数据框、行索引、列索引和值,计算聚合函数(如平均分),并可打印或保存结果到文件。这允许对数据进行高效汇总和分析。
67 2
|
6月前
|
Python
Pandas进阶--map映射,分组聚合和透视pivot_table详解
Pandas进阶--map映射,分组聚合和透视pivot_table详解
145 0
|
6月前
|
数据可视化 数据挖掘 Linux
【数据分析与可视化】Pandas可视化与数据透视表的讲解及实战(超详细 附源码)
【数据分析与可视化】Pandas可视化与数据透视表的讲解及实战(超详细 附源码)
161 0
|
数据挖掘 索引 Python
【100天精通Python】Day60:Python 数据分析_Pandas高级功能-数据透视表pivot_table()和数据交叉表crosstab()常用功能和操作
【100天精通Python】Day60:Python 数据分析_Pandas高级功能-数据透视表pivot_table()和数据交叉表crosstab()常用功能和操作
223 0
|
数据挖掘 索引 Python
【100天精通Python】Day57:Python 数据分析_Pandas数据描述性统计,分组聚合,数据透视表和相关性分析
【100天精通Python】Day57:Python 数据分析_Pandas数据描述性统计,分组聚合,数据透视表和相关性分析
129 0
|
23天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
55 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
79 0