分布式调用跟踪系统的设计和应用

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介:

一、为什么需要分布式调用跟踪系统

随着分布式服务架构的流行,特别是微服务等设计理念在系统中的应用,业务的调用链越来越复杂,

可以看到,随着服务的拆分,系统的模块变得越来越多,不同的模块可能由不同的团队维护,

一个请求可能会涉及到几十个服务的协同处理, 牵扯到多个团队的业务系统,那么如何快速准确的定位到线上故障?
同时,缺乏一个自上而下全局的调用id,如何有效的进行相关的数据分析工作?

对于大型网站系统,如淘宝、京东等电商网站,这些问题尤其突出。

一个典型的分布式系统请求调用过程:

比较成熟的解决方案是通过调用链的方式,把一次请求调用过程完整的串联起来,这样就实现了对请求调用路径的监控。

二、调用跟踪系统的业务场景

(1)故障快速定位

通过调用链跟踪,一次请求的逻辑轨迹可以用完整清晰的展示出来。
开发中可以在业务日志中添加调用链ID,可以通过调用链结合业务日志快速定位错误信息。

(2)各个调用环节的性能分析

在调用链的各个环节分别添加调用时延,可以分析系统的性能瓶颈,进行针对性的优化。

(3)各个调用环节的可用性,持久层依赖等

通过分析各个环节的平均时延,QPS等信息,可以找到系统的薄弱环节,对一些模块做调整,如数据冗余等。

(4)数据分析等

调用链是一条完整的业务日志,可以得到用户的行为路径,汇总分析应用在很多业务场景。

 

三、分布式调用跟踪系统的设计

(1)分布式调用跟踪系统的设计目标

低侵入性,应用透明:

作为非业务组件,应当尽可能少侵入或者无侵入其他业务系统,对于使用方透明,减少开发人员的负担

低损耗:

服务调用埋点本身会带来性能损耗,这就需要调用跟踪的低损耗,
实际中还会通过配置采样率的方式,选择一部分请求去分析请求路径

大范围部署,扩展性:

作为分布式系统的组件之一,一个优秀的调用跟踪系统必须支持分布式部署,具备良好的可扩展性

(2)埋点和生成日志

埋点即系统在当前节点的上下文信息,可以分为客户端埋点、服务端埋点,以及客户端和服务端双向型埋点。

埋点日志通常要包含以下内容:

TraceId、RPCId、调用的开始时间,调用类型,协议类型,调用方ip和端口,请求的服务名等信息;
调用耗时,调用结果,异常信息,消息报文等;
预留可扩展字段,为下一步扩展做准备;

(3)抓取和存储日志

日志的采集和存储有许多开源的工具可以选择,
一般来说,会使用离线+实时的方式去存储日志,主要是分布式日志采集的方式。
典型的解决方案如Flume结合Kafka等MQ。

(4)分析和统计调用链数据

一条调用链的日志散落在调用经过的各个服务器上,
首先需要按 TraceId 汇总日志,然后按照RpcId 对调用链进行顺序整理。
调用链数据不要求百分之百准确,可以允许中间的部分日志丢失。

(5)计算和展示

汇总得到各个应用节点的调用链日志后,可以针对性的对各个业务线进行分析。
需要对具体日志进行整理,进一步储存在HBase或者关系型数据库中,可以进行可视化的查询。

四、调用跟踪系统的选型

大的互联网公司都有自己的分布式跟踪系统,
比如Google的Dapper,Twitter的zipkin,淘宝的鹰眼,新浪的Watchman,京东的Hydra等。

(1)Google的Drapper

Dapper是Google生产环境下的分布式跟踪系统,Dapper有三个设计目标:

低消耗:跟踪系统对在线服务的影响应该做到足够小。

应用级的透明:对于应用的程序员来说,是不需要知道有跟踪系统这回事的。如果一个跟踪系统想生效,就必须需要依赖应用的开发者主动配合,那么这个跟踪系统显然是侵入性太强的。

延展性:Google至少在未来几年的服务和集群的规模,监控系统都应该能完全把控住。

Drapper的日志格式:

dapper用span来表示一个服务调用开始和结束的时间,也就是时间区间。

dapper记录了span的名称以及每个span的ID和父ID,如果一个span没有父ID被称之为root span。所有的span都挂在一个特定的trace上,共用一个traceID,这些ID用全局64位整数标示。

Drapper如何进行跟踪收集:

分为3个阶段:

①各个服务将span数据写到本机日志上;

②dapper守护进程进行拉取,将数据读到dapper收集器里;

③dapper收集器将结果写到bigtable中,一次跟踪被记录为一行。 

 

(2)淘宝的鹰眼

关于淘宝的鹰眼系统,主要资料来自于内部分享,

鹰眼埋点和生成日志:

如何抓取和存储日志:

鹰眼的实现小结:




本文转自邴越博客园博客,原文链接:http://www.cnblogs.com/binyue/p/5703812.html,如需转载请自行联系原作者

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
23天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
56 4
|
1月前
|
存储 运维 负载均衡
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
116 4
构建高可用性GraphRAG系统:分布式部署与容错机制
|
1月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
43 5
|
28天前
|
机器学习/深度学习 人工智能 分布式计算
【AI系统】分布式通信与 NVLink
进入大模型时代后,AI的核心转向大模型发展,训练这类模型需克服大量GPU资源及长时间的需求。面对单个GPU内存限制,跨多个GPU的分布式训练成为必要,这涉及到分布式通信和NVLink技术的应用。分布式通信允许多个节点协作完成任务,而NVLink则是一种高速、低延迟的通信技术,用于连接GPU或GPU与其它设备,以实现高性能计算。随着大模型的参数、数据规模扩大及算力需求增长,分布式并行策略,如数据并行和模型并行,变得至关重要。这些策略通过将模型或数据分割在多个GPU上处理,提高了训练效率。此外,NVLink和NVSwitch技术的持续演进,为GPU间的高效通信提供了更强的支持,推动了大模型训练的快
40 0
|
2月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
2月前
|
消息中间件 中间件 数据库
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
65 3
|
2月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现
消息队列系统中的确认机制在分布式系统中如何实现
|
2月前
|
消息中间件 存储 监控
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
|
2月前
|
存储 开发框架 .NET
C#语言如何搭建分布式文件存储系统
C#语言如何搭建分布式文件存储系统
87 2
|
2月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?

热门文章

最新文章