再思linux内核在中断路径内不能睡眠/调度的原因(2010)【转】

简介:

转自:http://blog.csdn.net/maray/article/details/5770889

Linux内核中断路径中不能睡眠,为什么?

 

这里就行了很深入的讨论,值得一看:http://bbs2.chinaunix.net/viewthread.php?tid=1618430

 

但是,他们的讨论最后没有得出一个明确的结论。其中,cskyrain在8楼 的思考触及到了一个要点,但是没有深入展开:

 

 

[c-sharp]  view plain  copy
 
  1. 1楼 发表于 2009-11-24 20:36  | 只看该作者  
  2. 一直认为中断处理函数不能休眠的是天经地义的,可从没认真思考过问什么不能休眠,阻塞。最近看了一下ulk中对这个的解释,感觉还是有点不太明白,  
  3. “The price to pay for allowing nested kernel control paths is that an interrupt handler must never block, that is, no process switch can take place until an interrupt handler is running. In fact, all the data needed to resume a nested kernel control path is stored in the Kernel Mode stack, which is tightly bound to the current process.”  
  4. 上面把中断处理程序不能休眠归结为中断处理程序可以嵌套,而恢复嵌套的中断处理程序的相关数据放在内核态堆栈中,这个栈和当前进程相关联,这里有一点不明白,既然有栈存储数据,而且进程切换出去后,这个栈也不会被销毁,等进程在切回来时,不同样可以是嵌套的中断处理程序返回吗?(这里先不考了中断处理时间的太长,影响对中断处理的服务问题,只说明中断是否可休眠)。同时我google一下,看到有人对中断不能休眠的以一种解释:  
  5. ”  
  6. 中断处理程序用到的所有数据有保存在当前进程的内核堆栈中(一般情况下),如果此时发生了  
  7. 进程切换,中断处理程序将被阻塞, 当在一次发生进程切换时,不一定马上就换回来。比如当  
  8. 发生一个键盘中断时,键盘处理程序正在进行,此时又恰好发生了进程抢占,切换到了另一个进程  
  9. 中,假如那个进程不会引起内核的稳定,那么中断处理程序将一直阻塞,内禾根本就没法响应那个中断,  
  10. 直到在一次发生进程切换。假设最后又切换回执行中断处理程序的那个进程中时,如果它的内核堆栈  
  11. 受到了无意的破坏怎么办呢?那中断处理程序可能无法在继续运行下去了,此次中断服务失败。而且  
  12. 现在的处理程序都允许中断嵌套,一个中断被阻塞,其它的都将被阻塞。所以面对错综复杂的内核逻辑,  
  13. 最好的办法就是在中断处理程序中禁止发生进程切换,这样既提高了中断处理程序的响应速度,也增加了  
  14. 内核的稳定性与安全性。  
  15. “  
  16. 我感觉他的理由有两个:一个事效率,可能影响处理速度,另一就是:如果它的内核堆栈  
  17. 受到了无意的破坏怎么办?  
  18. 对于第一种理由先不讨论,  
  19. 可第二种,理由我感觉很牵强,如果栈那么容易破坏,哪我也可以说描述进程的数据结构什么的也可能被破坏,哪岂不是进程调度都是不安全的了,  
  20. 这样按他的说法,就只有第一个效率的原因了。  
  21. 回到ulk的解释,不知道是不是我理解的有问题,The price to pay for allowing nested kernel control paths is that an interrupt handler must never block  
  22. 感觉他把中端不能休眠的原因都归结为可支持中断处理程序的嵌套上了。那是不是可以这样理解,如果不支持中断嵌套,中断处理程序就可以休眠了,呵呵呵,貌似这样也不对吧,  
  23. 问题:中断处理程序不能休眠的原因究竟是什么呢?  

 

 

7楼:

 

 

[c-sharp]  view plain  copy
 
  1. kouu 发表于 2009-11-25 11:52  
  2. 回复 #6 cskyrain 的帖子  
  3. 中断不能block,应该特指异步中断吧。  
  4. 看了LZ这两天的帖子,我觉得还是类似4楼的说法比较靠谱:异步中断是独立的上下文,与当前进程无关,所以不能因为中断上下文的block而将无辜的进程给block了。可能就是基于这一初衷吧~ 那些已经将中断处理程序线程化了的实时linux应该是允许中断block的。  
  5. 而同步的中断(比如系统调用、缺页异常)是代表当前进程的,本来就是可以block的。  

 

 

8楼:

 

 

[c-sharp]  view plain  copy
 
  1. 回复 #7 kouu 的帖子  
  2. 呵呵,又翻了翻书,思考了一下,由于时间问题,没心情再从头读ulk,只是跳着查了一下,难免会漏下很多东西,不过还是说说我的理解:  
  3. 这里中断只代表异步中断,异常代表同步中断,这样系统调用是异常处理,不是中断处理。  
  4. 这里异常处理是可以休眠block的,因为异常处理所需的数据是存储在异常栈中,而每个进程都有一个异常栈,所以异常处理和进程是相关联的,这样异常处理可以block,被调度出去。  
  5. 而对于中断,分为两种情况,一种是中断使用单独的中断栈而不使用进程的内核栈的情况,这样,由于所有中断共享一个中断栈,这个中断栈不和特定进程关联,所以,这种中断时不能block的,block后他是不能再被调度。  
  6. 第二种情况是,中断不使用单独的中断栈,而是使用当前进程的内核栈,这种情况我认为是和异常处理时一样的,这种中断时可以block的,之所以不准许中断 block不是技术上切换不回来,而是逻辑上为了提高处理的效率强制其不能block。  
  7. 以上是我现阶段的理解,感觉,前俩个的解释应该没什么问题,但最后对不是用中断栈的中断的解释可能有错误的认识,不知kouu对这种解释有何看法?  

 

 

 

总体上,大家得到的初步结论是:内核在中断路径内不能睡眠,不是技术上做不到,而是没有理由这么做,或者说在中断路径上睡眠不合理。一方面,外部事件导致当前进程时间片被剥夺,不合理;一方面,中断服务程序应该尽快处理完中断,保证IO吞吐率。

 

-------------------------------分割线----------------------------

 

通过阅读ULK中文版第三版164页的内容,让我对这个问题有了一个较为清晰的认识:

 

内核在编译的时候设置了THREAD_SIZE的值为8K的话, 那么每个进程的内核栈的大小就为8K, 此时如果发生中断时, 那么进程的寄存器等值就会保存到它的8K的内核栈中. 但是如果设置了THREAD_SIZE的大小为4K的话, 内核就会使用3种类型的内核栈, 异常栈, 硬件中断请求栈以及软中断请求栈( When using 4K stacks, interrupts get their own stack instead of using the currently active kernel stack.)

   * 异常栈:每个进程一个。

   * 硬中断请求栈:每个CPU一个,每个占用一个单独的页框。do_IRQ()函数内部通过调用execute_on_irq_stack负责切换到该栈中来。

   * 软中断请求栈:每个CPU一个,每个占用一个单独的页框。

 

 

关于切换到中断栈的方法,请看下面的代码:

 

 

[cpp]  view plain  copy
 
  1. /* 
  2.  * do_IRQ handles all normal device IRQ's (the special 
  3.  * SMP cross-CPU interrupts have their own specific 
  4.  * handlers). 
  5.  */  
  6. unsigned int do_IRQ(struct pt_regs *regs)  
  7. {  
  8.     struct pt_regs *old_regs;  
  9.     /* high bit used in ret_from_ code */  
  10.     int overflow;  
  11.     unsigned vector = ~regs->orig_ax;  
  12.     struct irq_desc *desc;  
  13.     unsigned irq;  
  14.     old_regs = set_irq_regs(regs);  
  15.     irq_enter();  
  16.     irq = __get_cpu_var(vector_irq)[vector];  
  17.     overflow = check_stack_overflow();  
  18.     desc = irq_to_desc(irq);  
  19.     if (unlikely(!desc)) {  
  20.         printk(KERN_EMERG "%s: cannot handle IRQ %d vector %#x cpu %d/n",  
  21.                     __func__, irq, vector, smp_processor_id());  
  22.         BUG();  
  23.     }  
  24.     if (!execute_on_irq_stack(overflow, desc, irq)) {  
  25.         if (unlikely(overflow))  
  26.             print_stack_overflow();  
  27.         desc->handle_irq(irq, desc);  
  28.     }  
  29.     irq_exit();  
  30.     set_irq_regs(old_regs);  
  31.     return 1;  
  32. }  

 

 

 

 

[cpp]  view plain  copy
 
  1. static inline int  
  2. execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)  
  3. {  
  4.     union irq_ctx *curctx, *irqctx;  
  5.     u32 *isp, arg1, arg2;  
  6.     curctx = (union irq_ctx *) current_thread_info();  
  7.     irqctx = hardirq_ctx[smp_processor_id()];  
  8.     /* 
  9.      * this is where we switch to the IRQ stack. However, if we are 
  10.      * already using the IRQ stack (because we interrupted a hardirq 
  11.      * handler) we can't do that and just have to keep using the 
  12.      * current stack (which is the irq stack already after all) 
  13.      */  
  14.     if (unlikely(curctx == irqctx))  
  15.         return 0;  
  16.     /* build the stack frame on the IRQ stack */  
  17.     isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));  
  18.     irqctx->tinfo.task = curctx->tinfo.task;  
  19.     irqctx->tinfo.previous_esp = current_stack_pointer;  
  20.     /* 
  21.      * Copy the softirq bits in preempt_count so that the 
  22.      * softirq checks work in the hardirq context. 
  23.      */  
  24.     irqctx->tinfo.preempt_count =  
  25.         (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |  
  26.         (curctx->tinfo.preempt_count & SOFTIRQ_MASK);  
  27.     if (unlikely(overflow))  
  28.         call_on_stack(print_stack_overflow, isp);  
  29.     asm volatile("xchgl %%ebx,%%esp /n"  
  30.              "call  *%%edi      /n"  
  31.              "movl  %%ebx,%%esp /n"  
  32.              : "=a" (arg1), "=d" (arg2), "=b" (isp)  
  33.              :  "0" (irq),   "1" (desc),  "2" (isp),  
  34.             "D" (desc->handle_irq)  
  35.              : "memory", "cc", "ecx");  
  36.     return 1;  
  37. }  

 

 

 

 

最后,思考一下标题中的问题:linux内核在中断路径内不能睡眠/调度的原因

Linux是以进程为调度单位的,调度器只看到进程内核栈,而看不到中断栈。在独立中断栈的模式下,如果linux内核在中断路径内发生了调度(从技术上讲,睡眠和调度是一个意思),那么linux将无法找到“回家的路”,未执行完的中断处理代码将再也无法获得执行机会。











本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/sky-heaven/p/5379415.html,如需转载请自行联系原作者


相关文章
|
1天前
|
Linux 数据库
Linux内核中的锁机制:保障并发操作的数据一致性####
【10月更文挑战第29天】 在多线程编程中,确保数据一致性和防止竞争条件是至关重要的。本文将深入探讨Linux操作系统中实现的几种关键锁机制,包括自旋锁、互斥锁和读写锁等。通过分析这些锁的设计原理和使用场景,帮助读者理解如何在实际应用中选择合适的锁机制以优化系统性能和稳定性。 ####
14 6
|
1天前
|
机器学习/深度学习 负载均衡 算法
深入探索Linux内核调度机制的优化策略###
本文旨在为读者揭开Linux操作系统中至关重要的一环——CPU调度机制的神秘面纱。通过深入浅出地解析其工作原理,并探讨一系列创新优化策略,本文不仅增强了技术爱好者的理论知识,更为系统管理员和软件开发者提供了实用的性能调优指南,旨在促进系统的高效运行与资源利用最大化。 ###
|
4天前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
2天前
|
缓存 网络协议 Linux
Linux操作系统内核
Linux操作系统内核 1、进程管理: 进程调度 进程创建与销毁 进程间通信 2、内存管理: 内存分配与回收 虚拟内存管理 缓存管理 3、驱动管理: 设备驱动程序接口 硬件抽象层 中断处理 4、文件和网络管理: 文件系统管理 网络协议栈 网络安全及防火墙管理
19 4
|
4天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
6月前
|
存储 负载均衡 网络协议
X86 linux异常处理与Ipipe接管中断/异常
本文讲述了X86平台上Xenomai的ipipe如何接管中断处理。首先回顾了X86中断处理机制,包括IDT(中断描述符表)的工作原理和中断处理流程。接着详细介绍了Linux中中断门的初始化,包括门描述符的结构、中断门的定义和填充,以及IDT的加载。在异常处理部分,文章讲解了早期异常处理和start_kernel阶段的异常向量初始化。最后,讨论了APIC和SMP中断在IDT中的填充,以及剩余中断的统一处理。文章指出,ipipe通过在中断入口处插入`__ipipe_handle_irq()`函数,实现了对中断的拦截和优先处理,确保了实时性。
140 0
X86 linux异常处理与Ipipe接管中断/异常
|
存储 负载均衡 算法
Linux内核17-硬件如何处理中断和异常
Linux内核17-硬件如何处理中断和异常
|
Linux
Linux操作系统基础知识之五:中断和异常
Q1.        什么是中断?什么是异常?二者有何不同? A: 1)        中断控制是为克服对I/O接口采用程序查询控制服务方式所带来的处理器低效率而产生的,它的主要优点是只有在I/O接口需要服务时才能得到处理器的响应,而不需要处...
1021 0
下一篇
无影云桌面