POJ 1745 Divisibility (线性dp)

简介:
Divisibility
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions:10598   Accepted: 3787

Description

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
17 + 5 + -21 - 15 = -14 
17 + 5 - -21 + 15 = 58 
17 + 5 - -21 - 15 = 28 
17 - 5 + -21 + 15 = 6 
17 - 5 + -21 - 15 = -24 
17 - 5 - -21 + 15 = 48 
17 - 5 - -21 - 15 = 18 
We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

You are to write a program that will determine divisibility of sequence of integers. 

Input

The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

Output

Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

Sample Input

4 7
17 5 -21 15

Sample Output

Divisible

Source

Northeastern Europe 1999

题目链接:http://poj.org/problem?id=1745

题目大意:给n个数,让他们通过加减运算。推断结果可不可能被k整除

题目分析:用dp[i][j]表示通过前i个数的运算得到的余数为j可不可能。先看求a % k。假设a > k,则a = n * k + b。(n * k + b) % k == 0 + b % k = a % k,所以当a > k时,对求余数有影响的部分是不能被整除的部分。因此对于每一个数我们能够做a[i] = a[i] > 0 ? (a[i] % k) : -(a[i] % k)的预处理,然后就是在dp[i - 1][j]的情况下。推出下一状态。下一状态有两种可能,加和减,减的时候防止出现负数加上个k再取余,初始化dp[0][a[0]] = true最后仅仅要推断dp[n - 1][0]及前n个数通过加减运算是否能得到被k整除的值


#include <cstdio>
#include <cstring>
int const MAX = 10005;

bool dp[MAX][105];
int a[MAX];

int main()
{
    int n, k;
    while(scanf("%d %d", &n, &k) != EOF)
    {
        memset(dp, false, sizeof(dp));
        for(int i = 0; i < n; i++)
        {
            scanf("%d", &a[i]);
            a[i] = a[i] > 0 ? (a[i] % k) : -(a[i] % k);
        }
        dp[0][a[0]] = true;
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j <= k; j++)
            {
                if(dp[i - 1][j])
                {
                    dp[i][(j + a[i]) % k] = true;
                    dp[i][(k + j - a[i]) % k] = true;
                }
            }
        }
        printf("%s\n", dp[n - 1][0] ? "Divisible" : "Not divisible");
    }
}


版权声明:本文博客原创文章,博客,未经同意,不得转载。






本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/4749832.html,如需转载请自行联系原作者


相关文章
|
8月前
|
算法
Highways(POJ—2485)
Highways(POJ—2485)
poj 3298 数状数组
题目大意是一条大街上住着n个乒乓球爱好者,他们的水平高低用一个数值表示,他们经常举办比赛,比赛要三个人,一人当裁判。对裁判是有一定要求的,裁判的水平必须介于两选手之间且必须住他们中间,计算可以举办多少场比赛
46 0
|
测试技术
poj-1218 THE DRUNK JAILER 喝醉的狱卒
自己去看看原题; 题目大意: 就是一个狱卒喝醉了,他第一趟吧所有的监狱都带开,第二趟把能把二整除的监狱关闭,第三趟操作能把三整除的监狱; 求最后能逃跑的罪犯数 输入第一个数是代表 测试数据组数 每个数据代表狱卒来回的次数 当作开关问题即可 #include using names...
1018 0
|
并行计算 网络架构
poj-1005-l tanink i need a houseboat
Description Fred Mapper is considering purchasing some land in Louisiana to build his house on. In the process of investigating the land, he learned ...
994 0
POJ 2487 Stamps
Description Background Everybody hates Raymond. He’s the largest stamp collector on planet earth and because of that he always makes fun of all the others at the stamp collector parties.
1072 0
poj 2337 Catenyms
点击打开链接poj2377 思路: 并查集+排序+欧拉道路 分析: 1 题目要求的是,是否可以组成欧拉道路并且输出字典序最小的方案 2 和别的题目不一样的是这一题的输出是最小的字典序,所以这里面是一个难点,那么我们应该怎么做呢?其实我们只要对输入的n个单词进行从小到达排序即可 3 然后我们先去判断该有向图是否是单连通的 4 我们去判断是否最多只有两个点的入度不等与出度,其余所有点的出度等于入度 5 如果都满足的话,进行dfs。
863 0