这是 Combinations 组合项 的延伸,在这里,我们允许不同的顺序出现,那么新的题目要求如下:
Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.
For example,
If n = 4 and k = 2, a solution is:
[
[1,2],
[1,3],
[1,4],
[2,1],
[2,3],
[2,4],
[3,1],
[3,2],
[3,4],
[4,1],
[4,2],
[4,3],
]
这题的解法其实只是在原题 Combinations 组合项 的基础上做很小的改动即可,这里我们为了避免重复项,引入了visited数字来标记某个数组是否出现过,然后就是递归中的循环不是从level开始,改为每次从0开始,这样就能把所有不同的排列方式都找出来,代码如下:
class Solution { public: vector<vector<int> > combine(int n, int k) { vector<vector<int> > res; vector<int> out; vector<int> visited(n, 0); combineDFS(n, k, 0, visited, out, res); return res; } void combineDFS(int n, int k, int level, vector<int> &visited, vector<int> &out, vector<vector<int> > &res) { if (out.size() == k) res.push_back(out); else { for (int i = 0; i < n; ++i) { if (visited[i] == 0) { visited[i] = 1; out.push_back(i + 1); combineDFS(n, k, level + 1, visited, out, res); out.pop_back(); visited[i] = 0; } } } } };
本文转自博客园Grandyang的博客,原文链接:组合项[FollowUp] Combinations ,如需转载请自行联系原博主。