题目链接:http://www.lintcode.com/zh-cn/problem/longest-increasing-continuous-subsequence-ii/
最长上升连续子序列 II
给定一个整数矩阵(其中,有 n 行, m 列),请找出矩阵中的最长上升连续子序列。(最长上升连续子序列可从任意行或任意列开始,向上/下/左/右任意方向移动)。
样例
给定一个矩阵
[
[1 ,2 ,3 ,4 ,5],
[16,17,24,23,6],
[15,18,25,22,7],
[14,19,20,21,8],
[13,12,11,10,9]
]
返回 25
思路:记忆化搜索 + dp
设Lics(num)表示以num开头的最长上升子连续序列的长度, 则Lics(A[x][y]) = max(Lics(A[x-1][y]), Lics(A[x][y-1]), Lics(x+1,y), Lics(x, y+1))+1;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<deque>
#include<map>
using namespace std;
class Solution {
public:
/**
* @param A an integer matrix
* @return an integer
*/
int n, m, maxL;
int lics[1000][1000];
int vis[1000][1000];
int dir[4][2] = {{0, 1}, {1, 0}, {0,-1}, {-1,0}};
int dfs(vector<vector<int>>& A, int x, int y){
int maxLics = 0;
vis[x][y] = 1;
for(int i=0; i<4; ++i){
int xx = x+dir[i][0];
int yy = y+dir[i][1];
if(xx<0 || yy<0 || xx>=n || yy>=m) continue;
if(A[x][y] >= A[xx][yy]) continue;
if(!vis[xx][yy])
maxLics = max(maxLics, dfs(A, xx, yy));
else
maxLics = max(maxLics, lics[xx][yy]);
}
lics[x][y] = maxLics+1;
if(maxL < lics[x][y]) maxL = lics[x][y];
return lics[x][y];
}
int longestIncreasingContinuousSubsequenceII(vector<vector<int>>& A) {
n = A.size();
if(n == 0) return 0;
m = A[0].size();
memset(lics, 0, sizeof(lics));
memset(vis, 0, sizeof(vis));
maxL = 0;
for(int i=0; i<n; ++i)
for(int j=0; j<m; ++j)
if(!vis[i][j])
dfs(A, i, j);
return maxL;
}
};
/*
2 3 4 5
17 24 23 6
18 25 22 7
19 20 21 8
12 11 10 9
*/