平衡二叉树的插入过程: http://www.cnblogs.com/hujunzheng/p/4665451.html
对于二叉平衡树的删除采用的是二叉排序树删除的思路:
假设被删结点是*p,其双亲是*f,不失一般性,设*p是*f的左孩子,下面分三种情况讨论:
⑴ 若结点*p是叶子结点,则只需修改其双亲结点*f的指针即可。
⑵ 若结点*p只有左子树PL或者只有右子树PR,则只要使PL或PR 成为其双亲结点的左子树即可。
⑶ 若结点*p的左、右子树均非空,先找到*p的中序前趋结点*s(注意*s是*p的左子树中的最右下的结点,它的右链域为空),然后有两种做法:
① 令*p的左子树直接链到*p的双亲结点*f的左链上,而*p的右子树链到*p的中序前趋结点*s的右链上。
② 以*p的中序前趋结点*s代替*p(即把*s的数据复制到*p中),将*s的左子树链到*s的双亲结点*q的左(或右)链上。
注:leftBalance_del 和 rightBalance_del方法是在删除节点时对左子树和右子树的平衡调整,leftBalance 和 rightBalance方法是在插入节点是对左右子树的平衡调整。 在具体调整的时候,和插入式调整时运用同样的分类方法,这里介绍一种情况,如下图所示(代码部分见代码中的提示)
#include<iostream>
#include<cstring>
#include<string>
#include<queue>
#include<map>
#include<cstdio>
#define LH 1 //左高
#define EH 0 //等高
#define RH -1 //右高
using namespace std;
template <typename ElemType>
class BSTNode{
public:
ElemType data;//节点的数据
int bf;//节点的平衡因子
BSTNode *child[2];
BSTNode(){
child[0] = NULL;
child[1] = NULL;
}
};
typedef BSTNode<string> BSTnode, *BSTree;
template <typename ElemType>
class AVL{
public:
BSTNode<ElemType> *T;
void buildT();
void outT(BSTNode<ElemType> *T);
void deleteAVL(BSTNode<ElemType>* &T, ElemType key, bool &shorter);
bool insertAVL(BSTNode<ElemType>* &T, ElemType key, bool &taller);
private:
void deleteNode(BSTNode<ElemType>* T, BSTNode<ElemType>* &s, BSTNode<ElemType>* p, bool flag, bool &shorter);
void rotateT(BSTNode<ElemType>* &o, int x);//子树的左旋或者右旋
void leftBalance(BSTNode<ElemType>* &o);
void rightBalance(BSTNode<ElemType>* &o);
void leftBalance_del(BSTNode<ElemType>* &o);
void rightBalance_del(BSTNode<ElemType>* &o);
};
template <typename ElemType>
void AVL<ElemType>::rotateT(BSTNode<ElemType>* &o, int x){
BSTNode<ElemType>* k = o->child[x^1];
o->child[x^1] = k->child[x];
k->child[x] = o;
o = k;
}
template <typename ElemType>
void AVL<ElemType>::outT(BSTNode<ElemType> *T){
if(!T) return;
cout<<T->data<<" ";
outT(T->child[0]);
outT(T->child[1]);
}
template <typename ElemType>
void AVL<ElemType>::buildT(){
T = NULL;
ElemType key;
while(cin>>key){
if(key==0) break;
bool taller = false;
insertAVL(T, key, taller);
}
}
template <typename ElemType>
void AVL<ElemType>::deleteNode(BSTNode<ElemType>* T, BSTNode<ElemType>* &s, BSTNode<ElemType>* p, bool flag, bool &shorter){
if(flag){
flag = false;
deleteNode(T, s->child[0], s, flag, shorter);
if(shorter){
switch(s->bf){
case LH:
s->bf = EH;
shorter = false;
break;
case EH:
s->bf = RH;
shorter = true;
break;
case RH:
rightBalance_del(s);
shorter = false;
break;
}
}
} else {
if(s->child[1]==NULL){
T->data = s->data;
BSTNode<ElemType>* ss = s;
if(p != T){
p->child[1] = s->child[0];
} else {
p->child[0] = s->child[0];
}
delete ss;//s是引用类型,不能delete s
shorter = true;
return ;
}
deleteNode(T, s->child[1], s, flag, shorter);
if(shorter){
switch(s->bf){
case LH://这是上面配图的情况
leftBalance_del(s);
shorter = false;
break;
case EH:
s->bf = LH;
shorter = true;
break;
case RH:
s->bf = EH;
shorter = false;
break;
}
}
}
}
template <typename ElemType>
bool AVL<ElemType>::insertAVL(BSTNode<ElemType>* &T, ElemType key, bool &taller){
if(!T){//插入新的节点,taller=true 那么树的高度增加
T = new BSTNode<ElemType>();
T->data = key;
T->bf = EH;
taller = true;
} else {
if(T->data == key){
taller = false;
return false;
}
if(T->data > key){//向T的左子树进行搜索并插入
if(!insertAVL(T->child[0], key, taller)) return false;
if(taller){//
switch(T->bf){
case LH://此时左子树的高度高,左子树上又插入了一个节点,失衡,需要进行调整
leftBalance(T);
taller = false;//调整之后高度平衡
break;
case EH:
T->bf = LH;
taller = true;
break;
case RH:
T->bf = EH;
taller = false;
break;
}
}
}
if(T->data < key) {//向T的右子树进行搜索并插入
if(!insertAVL(T->child[1], key, taller)) return false;
switch(T->bf){
case LH:
T->bf = EH;
taller = false;
break;
case EH:
T->bf = RH;
taller = true;
break;
case RH:
rightBalance(T);
taller = false;
break;
}
}
}
return true;
}
template <typename ElemType>
void AVL<ElemType>::deleteAVL(BSTNode<ElemType>* &T, ElemType key, bool &shorter){
if(T->data == key){
BSTNode<ElemType>*q, s;
if(!T->child[1]){//右子树为空,然后重接其左子树
q = T;
T = T->child[0];
shorter = true;//树变矮了
delete q;
} else if(!T->child[0]){//左子树为空,重接其右子树
q = T;
T = T->child[1];
shorter = true;//树变矮了
delete q;
} else {//左右子树都非空 ,也就是第三种情况
deleteNode(T, T, NULL, true, shorter);
shorter = true;
}
} else if(T->data > key) {//左子树
deleteAVL(T->child[0], key, shorter);
if(shorter){
switch(T->bf){
case LH:
T->bf = EH;
shorter = false;
break;
case RH:
rightBalance_del(T);
shorter = false;
break;
case EH:
T->bf = RH;
shorter = true;
break;
}
}
} else if(T->data < key){//右子树
deleteAVL(T->child[1], key, shorter);
if(shorter){
switch(T->bf){
case LH://这是上面配图的情况
leftBalance_del(T);
shorter = false;
break;
case RH:
T->bf = EH;
shorter = false;
break;
case EH:
T->bf = LH;
shorter = true;
break;
}
}
}
}
template <typename ElemType>
void AVL<ElemType>::leftBalance(BSTNode<ElemType>* &T){
BSTNode<ElemType>* lchild = T->child[0];
switch(lchild->bf){//检查T的左子树的平衡度,并作相应的平衡处理
case LH://新节点 插入到 T的左孩子的左子树上,需要对T节点做单旋(右旋)处理
T->bf = lchild->bf = EH;
rotateT(T, 1);
break;
case RH://新节点 插入到 T的左孩子的右子树上,需要做双旋处理 1.对lchild节点进行左旋,2.对T节点进行右旋
BSTNode<ElemType>* rdchild = lchild->child[1];
switch(rdchild->bf){//修改 T 及其左孩子的平衡因子
case LH: T->bf = RH; lchild->bf = EH; break;
case EH: T->bf = lchild->bf = EH; break;//发生这种情况只能是 rdchild无孩子节点
case RH: T->bf = EH; lchild->bf = LH; break;
}
rdchild->bf = EH;
rotateT(T->child[0], 0);//不要写成 rotateT(lc, 0);//这样的话T->lchild不会改变
rotateT(T, 1);
break;
}
}
template <typename ElemType>
void AVL<ElemType>::rightBalance(BSTNode<ElemType>* &T){
BSTNode<ElemType>* rchild = T->child[1];
switch(rchild->bf){//检查T的左子树的平衡度,并作相应的平衡处理
case RH://新节点 插入到 T的右孩子的右子树上,需要对T节点做单旋(左旋)处理
T->bf = rchild->bf = EH;
rotateT(T, 0);
break;
case LH://新节点 插入到 T的右孩子的左子树上,需要做双旋处理 1.对rchild节点进行右旋,2.对T节点进行左旋
BSTNode<ElemType>* ldchild = rchild->child[0];
switch(ldchild->bf){//修改 T 及其右孩子的平衡因子
case LH: T->bf = EH; rchild->bf = RH; break;
case EH: T->bf = rchild->bf = EH; break;//发生这种情况只能是 ldchild无孩子节点
case RH: T->bf = LH; rchild->bf = EH; break;
}
ldchild->bf = EH;
rotateT(T->child[1], 1);
rotateT(T, 0);
break;
}
}
template <typename ElemType>
void AVL<ElemType>::leftBalance_del(BSTNode<ElemType>* &T){
BSTNode<ElemType>* lchild = T->child[0];
switch(lchild->bf){
case LH:
T->bf = EH;
lchild->bf = EH;
rotateT(T, 1);
break;
case EH:
T->bf = LH;
lchild->bf = EH;
rotateT(T, 1);
break;
case RH://这是上面配图的情况
BSTNode<ElemType>* rdchild = lchild->child[1];
switch(rdchild->bf){
case LH:
T->bf = RH;
lchild->bf = rdchild->bf = EH;
break;
case EH:
rdchild->bf = T->bf = lchild->bf = EH;
break;
case RH:
T->bf = rdchild->bf = EH;
lchild->bf = LH;
break;
}
rotateT(T->child[0], 0);
rotateT(T, 1);
break;
}
}
template <typename ElemType>
void AVL<ElemType>::rightBalance_del(BSTNode<ElemType>* &T){
BSTNode<ElemType>* rchild = T->child[1];
BSTNode<ElemType>* ldchild = rchild->child[0];
switch(rchild->bf){
case LH:
switch(ldchild->bf){
case LH:
ldchild->bf = T->bf = EH;
rchild->bf = RH;
break;
case EH:
ldchild->bf = T->bf = rchild->bf = EH;
break;
case RH:
rchild->bf = T->bf = EH;
ldchild->bf = LH;
break;
}
rotateT(T->child[1], 1);
rotateT(T, 0);
break;
case EH:
//outT(this->T);e EH:
T->bf = RH;
rchild->bf = EH;
rotateT(T, 0);
break;
case RH:
T->bf = EH;
rchild->bf = EH;
rotateT(T, 0);
break;
}
}
int main(){
AVL<int> avl;
avl.buildT();
cout<<"平衡二叉树先序遍历如下:"<<endl;
avl.outT(avl.T);
cout<<endl;
bool shorter = false;
avl.deleteAVL(avl.T, 24, shorter);
avl.outT(avl.T);
return 0;
}
/*
24 37 90 53 0
24 37 90 53 12 26 0
*/