[LeetCode] Median of Two Sorted Arrays 两个有序数组的中位数

简介:

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解。但是这道题被定义为Hard也是有其原因的,难就难在要在两个未合并的有序数组之间使用二分法,这里我们需要定义一个函数来找到第K个元素,由于两个数组长度之和的奇偶不确定,因此需要分情况来讨论,对于奇数的情况,直接找到最中间的数即可,偶数的话需要求最中间两个数的平均值。下面重点来看如何实现找到第K个元素,首先我们需要让数组1的长度小于或等于数组2的长度,那么我们只需判断如果数组1的长度大于数组2的长度的话,交换两个数组即可,然后我们要判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可。还有一种情况是当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可。

C++ 解法一:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int total = nums1.size() + nums2.size();
        if (total % 2 == 1) {
            return findKth(nums1, 0, nums2, 0, total / 2 + 1);
        } else {
            return (findKth(nums1, 0, nums2, 0, total / 2) + findKth(nums1, 0, nums2, 0, total / 2 + 1)) / 2;
        }
    }
    double findKth(vector<int> &nums1, int i, vector<int> &nums2, int j, int k) {
        if (nums1.size() - i > nums2.size() - j) return findKth(nums2, j, nums1, i, k);
        if (nums1.size() == i) return nums2[j + k - 1];
        if (k == 1) return min(nums1[i], nums2[j]);
        int pa = min(i + k / 2, int(nums1.size())), pb = j + k - pa + i;
        if (nums1[pa - 1] < nums2[pb - 1]) 
            return findKth(nums1, pa, nums2, j, k - pa + i);
        else if (nums1[pa - 1] > nums2[pb - 1]) 
            return findKth(nums1, i, nums2, pb, k - pb + j);
        else 
            return nums1[pa - 1];
    }
};

上面的方法变量太多,较为复杂,我们也可以通过在findKth函数改变数组元素的个数来去掉一些变量,使整体看起来更加简洁清楚,参见代码如下:

C++ 解法二:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        return (findKth(nums1, nums2, (m + n + 1) / 2) + findKth(nums1, nums2, (m + n + 2) / 2)) / 2.0;
    }
    int findKth(vector<int> nums1, vector<int> nums2, int k) {
        int m = nums1.size(), n = nums2.size();
        if (m > n) return findKth(nums2, nums1, k);
        if (m == 0) return nums2[k - 1];
        if (k == 1) return min(nums1[0], nums2[0]);
        int i = min(m, k / 2), j = min(n, k / 2);
        if (nums1[i - 1] > nums2[j - 1]) {
            return findKth(nums1, vector<int>(nums2.begin() + j, nums2.end()), k - j);
        } else {
            return findKth(vector<int>(nums1.begin() + i, nums1.end()), nums2, k - i);
        }
        return 0;
    }
};

Java 解法二:

public class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int m = nums1.length, n = nums2.length, left = (m + n + 1) / 2, right = (m + n + 2) / 2;
        return (findKth(nums1, nums2, left) + findKth(nums1, nums2, right)) / 2.0;
    }
    int findKth(int[] nums1, int[] nums2, int k) {
        int m = nums1.length, n = nums2.length;
        if (m > n) return findKth(nums2, nums1, k);
        if (m == 0) return nums2[k - 1];
        if (k == 1) return Math.min(nums1[0], nums2[0]);
        int i = Math.min(m, k / 2), j = Math.min(n, k / 2);
        if (nums1[i - 1] > nums2[j - 1]) {
            return findKth(nums1, Arrays.copyOfRange(nums2, j, n), k - j);
        } else {
            return findKth(Arrays.copyOfRange(nums1, i, m), nums2, k - i);
        }
    }
}

此题还能用二分搜索法来解,是一种相当巧妙的应用,讲解在这个帖子中写的十分清楚,等有时间我再来写写分析过程:

C++ 解法三:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        if (m < n) return findMedianSortedArrays(nums2, nums1);
        if (n == 0) return ((double)nums1[(m - 1) / 2] + (double)nums1[m / 2]) / 2.0;
        int left = 0, right = n * 2;
        while (left <= right) {
            int mid2 = (left + right) / 2;
            int mid1 = m + n - mid2;
            double L1 = mid1 == 0 ? INT_MIN : nums1[(mid1 - 1) / 2];
            double L2 = mid2 == 0 ? INT_MIN : nums2[(mid2 - 1) / 2];
            double R1 = mid1 == m * 2 ? INT_MAX : nums1[mid1 / 2];
            double R2 = mid2 == n * 2 ? INT_MAX : nums2[mid2 / 2];
            if (L1 > R2) left = mid2 + 1;
            else if (L2 > R1) right = mid2 - 1;
            else return (max(L1, L2) + min(R1, R2)) / 2;
        }
        return -1;
    }
};

Java 解法三:

public class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int m = nums1.length, n = nums2.length;
        if (m < n) return findMedianSortedArrays(nums2, nums1);
        if (n == 0) return (nums1[(m - 1) / 2] + nums1[m / 2]) / 2.0;
        int left = 0, right = 2 * n;
        while (left <= right) {
            int mid2 = (left + right) / 2;
            int mid1 = m + n - mid2;
            double L1 = mid1 == 0 ? Double.MIN_VALUE : nums1[(mid1 - 1) / 2];
            double L2 = mid2 == 0 ? Double.MIN_VALUE : nums2[(mid2 - 1) / 2];
            double R1 = mid1 == m * 2 ? Double.MAX_VALUE : nums1[mid1 / 2];
            double R2 = mid2 == n * 2 ? Double.MAX_VALUE : nums2[mid2 / 2];
            if (L1 > R2) left = mid2 + 1;
            else if (L2 > R1) right = mid2 - 1;
            else return (Math.max(L1, L2) + Math.min(R1, R2)) / 2;
        }
        return -1;
    }
}

本文转自博客园Grandyang的博客,原文链接:两个有序数组的中位数[LeetCode] Median of Two Sorted Arrays ,如需转载请自行联系原博主。

相关文章
|
3月前
leetCode(删除有序数组中的重复项)
如何在不使用额外空间的情况下,通过双指针法原地删除有序数组中的重复项。
38 2
|
5月前
|
存储 Java API
LeetCode------合并两个有序数组(4)【数组】
这篇文章介绍了LeetCode上的"合并两个有序数组"问题,并提供了三种解法:第一种是使用Java的Arrays.sort()方法直接对合并后的数组进行排序;第二种是使用辅助数组和双指针技术进行合并;第三种则是从后向前的双指针方法,避免了使用额外的辅助数组。
LeetCode------合并两个有序数组(4)【数组】
|
3月前
【LeetCode 48】108.将有序数组转换为二叉搜索树
【LeetCode 48】108.将有序数组转换为二叉搜索树
45 0
|
5月前
|
算法
LeetCode第26题删除有序数组中的重复项
这篇文章介绍了LeetCode第26题"删除有序数组中的重复项"的解题方法,通过使用双指针技巧,高效地去除数组中的相邻重复元素。
LeetCode第26题删除有序数组中的重复项
|
5月前
|
算法
LeetCode第80题删除有序数组中的重复项 II
文章介绍了LeetCode第80题"删除有序数组中的重复项 II"的解法,利用双指针技术在O(1)空间复杂度内原地删除重复元素,并总结了双指针技术在处理有序数组问题中的应用。
LeetCode第80题删除有序数组中的重复项 II
|
5月前
|
算法
LeetCode第88题合并两个有序数组
文章分享了LeetCode第88题"合并两个有序数组"的解法,通过从后向前的合并策略避免了数组元素的前移,使用三个指针高效地完成了合并过程。
|
5月前
|
算法 Java
LeetCode初级算法题:环形链表+排列硬币+合并两个有序数组java解法
LeetCode初级算法题:环形链表+排列硬币+合并两个有序数组java解法
59 0
|
4月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
64 6
|
5月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
130 2