挖掘建模

简介: #-*- coding: utf-8 -*-#逻辑回归 自动建模import pandas as pd#参数初始化filename = 'C:/Users/ecaoyng/Deskt...
#-*- coding: utf-8 -*-
#逻辑回归 自动建模
import pandas as pd

#参数初始化
filename = 'C:/Users/ecaoyng/Desktop/work space/DataMining/shizhan_source/chapter5/chapter5/chapter5/demo/data/bankloan.xls'
data = pd.read_excel(filename)
x = data.iloc[:,:8].as_matrix()
y = data.iloc[:,8].as_matrix()


from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR 
rlr = RLR() #建立随机逻辑回归模型,筛选变量
rlr.fit(x, y) #训练模型
rlr.get_support() #获取特征筛选结果,也可以通过.scores_方法获取各个特征的分数
print(u'通过随机逻辑回归模型筛选特征结束。')
print(u'有效特征为:%s' % ','.join(data.columns[rlr.get_support()]))
x = data[data.columns[rlr.get_support()]].as_matrix() #筛选好特征

lr = LR() #建立逻辑货柜模型
lr.fit(x, y) #用筛选后的特征数据来训练模型
print(u'逻辑回归模型训练结束。')
print(u'模型的平均正确率为:%s' % lr.score(x, y)) #给出模型的平均正确率,本例为81.4%



通过随机逻辑回归模型筛选特征结束。
有效特征为:工龄,地址,负债率,信用卡负债
逻辑回归模型训练结束。
模型的平均正确率为:0.814285714286
目录
相关文章
|
人工智能 算法 数据挖掘
数据挖掘(3.1)--频繁项集挖掘方法
关联规则挖掘是数据挖掘领域中研究最为广泛的也最为活跃的方法之一 关联规则反应了一个事物和其他事物之间的相互依存性和关联性 如果存在一定的关联关系,其中一个事物就可以通过其他事物预测到 最小支持度:就是说当支持度达到一定的阈值后,某种数据才有被挖掘的潜力这个阈值就是最小支持度计数(min_sup)。
165 0
|
5月前
|
机器学习/深度学习 自然语言处理 数据处理
深度学习中的自监督学习:无监督数据的价值挖掘
自监督学习正成为深度学习领域的前沿热点,通过设计巧妙的预训练任务,利用大量无标注数据,实现更高效、更泛化的模型训练。本文深入探讨了自监督学习的基本原理、主要方法及其在实际应用中的潜力与挑战。
235 0
|
机器学习/深度学习 算法 数据挖掘
数据挖掘(4.1)--分类和预测
分类过程是一个两步的过程。第一步是模型建立阶段,或者称为训练阶段,这一步的目的是描述预先定义的数据类或概念集的分类器。在这一步会使用分类算法分析已有数据(训练集)来构造分类器。训练数据集由一组数据元组构成,每个数据元组假定已经属于一个事先指定的类别(由类别标记属性确定)。
133 0
|
测试技术
分析建模
分析建模
113 0
|
数据可视化 算法 数据挖掘
网络结构数据分析:揭示复杂系统背后的规律
随着网络技术的不断发展,人们在互联网上留下了海量的数据,这些数据反映了人类社会、经济、生态等各个领域的复杂系统。而这些复杂系统背后的规律往往难以被直接观察到,需要借助网络结构数据分析的方法来揭示。本文将介绍网络结构数据分析的概念、方法和应用,以及未来发展方向
301 0
|
数据挖掘
数据挖掘-模型的评估(四)
数据挖掘-模型的评估(四)
301 0
数据挖掘-模型的评估(四)
|
存储 SQL 分布式计算
浅谈大数据建模的主要技术:维度建模
浅谈大数据建模的主要技术:维度建模
1360 0
浅谈大数据建模的主要技术:维度建模
|
机器学习/深度学习 分布式计算 算法
大数据建模、分析、挖掘技术应用
掌握基于Hadoop大数据平台的数据挖掘和数据仓库分布式系统平台应用,以及商业和开源的数据分析产品加上Hadoop平台形成大数据分析平台的应用剖析。