Python垃圾回收机制:gc模块

简介:

 在Python中,为了解决内存泄露问题,采用了对象引用计数,并基于引用计数实现自动垃圾回

    由于Python 有了自动垃圾回收功能,就造成了不少初学者误认为不必再受内存泄漏的骚扰了。但如果仔细查看一下Python文档对 __del__() 函数的描述,就知道这种好日子里也是有阴云的。下面摘抄一点文档内容如下:

Some common situations that may prevent the reference count of an object from going to zero include: circular references between objects (e.g., a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the stack frame of a function that caught an exception (the traceback stored in sys.exc_traceback keeps the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in interactive mode (the traceback stored in sys.last_traceback keeps the stack frame alive).

  可见, __del__() 函数的对象间的循环引用是导致内存泄漏的主凶。但没有__del__()函数的对象间的循环引用是可以被垃圾回收器回收掉的。

    如何知道一个对象是否内存泄露掉了呢?

    可以通过Python的扩展模块gc来查看不能回收掉的对象的详细信息。

 

例1:没有出现内存泄露的

复制代码
import gc
import sys

class CGcLeak(object):
    def __init__(self):
        self._text = '#' * 10

    def __del__(self):
        pass

def make_circle_ref():
    _gcleak = CGcLeak()
    print "_gcleak ref count0: %d" %(sys.getrefcount(_gcleak))
    del _gcleak
    try:
        print "_gcleak ref count1 :%d" %(sys.getrefcount(_gcleak))
    except UnboundLocalError:           # 本地变量xxx引用前没定义
        print "_gcleak is invalid!"
def test_gcleak():
    gc.enable()                         #设置垃圾回收器调试标志
    gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS)

    print "begin leak test..."
    make_circle_ref()

    print "\nbegin collect..."
    _unreachable = gc.collect()
    print "unreachable object num:%d" %(_unreachable)
    print "garbage object num:%d" %(len(gc.garbage))   #gc.garbage是一个list对象,列表项是垃圾收集器发现的不可达(即垃圾对象)、但又不能释放(不可回收)的对象,通常gc.garbage中的对象是引用对象还中的对象。因Python不知用什么顺序来调用对象的__del__函数,导致对象始终存活在gc.garbage中,造成内存泄露 if __name__ == "__main__": test_gcleak()。如果知道一个安全次序,那么就可以打破引用焕,再执行del gc.garbage[:]从而清空垃圾对象列表
if __name__ == "__main__":
    test_gcleak()
复制代码

 结果

复制代码
begin leak test...
_gcleak ref count0: 2         #对象_gcleak的引用计数为2
_gcleak is invalid!           #因为执行了del函数,_gcleak变为了不可达的对象

begin collect...              #开始垃圾回收
unreachable object num:0      #本次垃圾回收发现的不可达的对象个数为0
garbage object num:0          #整个解释器中垃圾对象的个数为0
复制代码

    结论是对象_gcleak的引用计数是正确的,也没发生内存泄漏。

 

例2:对自己的循环引用造成内存泄露

复制代码
import gc
import sys

class CGcLeak(object):
    def __init__(self):
        self._text = '#' * 10

    def __del__(self):
        pass

def make_circle_ref():
    _gcleak = CGcLeak()
    _gcleak._self = _gcleak     #自己循环引用自己
    print "_gcleak ref count0: %d" %(sys.getrefcount(_gcleak))
    del _gcleak
    try:
        print "_gcleak ref count1 :%d" %(sys.getrefcount(_gcleak))
    except UnboundLocalError:
        print "_gcleak is invalid!"

def test_gcleak():
    gc.enable()
    gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS)

    print "begin leak test..."
    make_circle_ref()

    print "\nbegin collect..."
    _unreachable = gc.collect()
    print "unreachable object num:%d" %(_unreachable)
    print "garbage object num:%d" %(len(gc.garbage))

if __name__ == "__main__":
    test_gcleak()
复制代码

结果

复制代码
begin leak test...
gc: uncollectable <CGcLeak 00000000026366A0>
_gcleak ref count0: 3
_gcleak is invalid!
gc: uncollectable <dict 0000000002667BD8>

begin collect...
unreachable object num:2       #本次回收不可达的对象个数为2
garbage object num:1           #整个解释器中垃圾个数为1
复制代码

 

例3:多个对象间的循环引用造成内存泄露 

复制代码
import gc
import sys

class CGcLeakA(object):
    def __init__(self):
        self._text = '$' * 10

    def __del__(self):
        pass

class CGcLeakB(object):
    def __init__(self):
        self._text = '$' * 10

    def __del__(self):
        pass

def make_circle_ref():
    _a = CGcLeakA()
    _b = CGcLeakB()
    _a.s = _b
    _b.d = _a
    print "ref count0:a=%d b=%d" %(sys.getrefcount(_a), sys.getrefcount(_b))
    del _a
    del _b
    try:
        print "ref count1:a%d" %(sys.getrefcount(_a))
    except UnboundLocalError:
        print "_a is invalid!"

def test_gcleak():
    gc.enable()
    gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS)

    print "begin leak test..."
    make_circle_ref()

    print "\nbegin collect..."
    _unreachable = gc.collect()
    print "unreachable object num:%d" %(_unreachable)
    print "garbage object num:%d" %(len(gc.garbage))

if __name__ == "__main__":
    test_gcleak()
复制代码

结果

1
2
3
4
5
6
7
8
9
10
11
begin leak test...
ref count 0: a= 3  b= 3
_a is invalid!
 
begin collect...
unreachable object num: 4
garbage object num: 2
gc: uncollectable <CGcLeakA  00000000022766 D 8 >
gc: uncollectable <CGcLeakB  0000000002276710 >
gc: uncollectable <dict  00000000022 A 7 E 18 >
gc: uncollectable <dict  00000000022 DF 3 C 8 >

 

结论

    Python 的 gc 有比较强的功能,比如设置 gc.set_debug(gc.DEBUG_LEAK) 就可以进行循环引用导致的内存泄露的检查。如果在开发时进行内存泄露检查;在发布时能够确保不会内存泄露,那么就可以延长 Python 的垃圾回收时间间隔、甚至主动关闭垃圾回收机制,从而提高运行效率。

 

有待于深入研究的知识:监控Python中的引用计数

参考:Python的内存泄漏及gc模块的使用分析

 





本文转自jihite博客园博客,原文链接:http://www.cnblogs.com/kaituorensheng/p/4449457.html,如需转载请自行联系原作者

相关文章
|
27天前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
42 4
|
6天前
|
Python
Python Internet 模块
Python Internet 模块。
101 74
|
24天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
104 63
|
26天前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
26天前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
18天前
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
30 3
|
27天前
|
Python
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
38 5
|
26天前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
1月前
|
JavaScript 前端开发 Python
python中的OS模块的基本使用
欢迎来到瑞雨溪的博客,一名热爱JavaScript与Vue的大一学生。博客分享前端技术及全栈开发经验,持续更新中,期待您的关注和支持!🎉🎉🎉
35 0
|
1月前
|
JavaScript 前端开发 Python
python中的platform模块的基本使用
欢迎来到瑞雨溪的博客,一名热爱JavaScript与Vue的大一学生。博客分享前端技术,助你成长。关注我,持续更新中!🎉🎉🎉
23 0
下一篇
DataWorks