HBase在腾讯大数据的应用实践

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 最近正好看到CSDN上一直在宣传腾讯云:就在不久前,支付宝、携程、蓝翔就因不同原因出现了网络故障,紧随其后艺龙网,途牛网、去哪儿网纷纷遭到大流量DDoS攻击,并造成短暂的业务中断。

最近正好看到CSDN上一直在宣传腾讯云:


就在不久前,支付宝、携程、蓝翔就因不同原因出现了网络故障,紧随其后艺龙网,途牛网、去哪儿网纷纷遭到大流量DDoS攻击,并造成短暂的业务中断。其中携程中断近12个小时,根据携程一季度财报公布的数据,折算每小时损失106.48万美元,那么本次中断相当于损失了1277.76万美元。
艺龙网因为紧急接入腾讯云的大禹系统,过滤了攻击流量,只引入正常流量,所以很快就恢复了,接入全过程仅耗时14分钟。这些事件让大家对于网络安全、网络服务有了更多的体会。


以上只是个查询,那么大的流量,那么大的数据,腾讯究竟在大数据方面又是如何实现的,在此与大家分享一篇文章:

《HBase在腾讯大数据的应用实践》


前言
随着腾讯产品与技术的发展,几乎任何一个与用户相关的在线业务的数据量都在亿级别,每日系统调用次数从亿到百亿,对海量数据的高效插入和快速读取变得越来越重要。而传统关系型数据库模式固定、强调参照完整性、数据的逻辑与物理形式相对独立等,比较适用于中小规模的数据,但对于数据的规模和并发读写方面进行大规模扩展时,RDBMS性能会大大降低,分布式更为困难。
为什么会选择HBase?
高可靠性。HBase是运行在Hadoop上的NoSQL数据库,它的数据由HDFS做了数据冗余,具有高可靠性。同时TDW(腾讯分布式数据仓库)五年的稳定运行,8800台的集群规模,证明了其服务于海量数据的能力。
高并发读写。使用日志文件(HLOG)和内存存储来将随机写转换成顺序写,保证稳定的数据插入速率;读写独立,这两种操作没有冲突。
优雅的伸缩性。HBase服务能力可以随服务器的增长而线性增长;HBase中表的数据表按Key 值范围自动分片,散布于不同的机器上,实现自动负载均衡;支持百亿行×百万列×上万个版本。
低延迟。数据按列存储,数据即索引。
低成本。历史数据不能轻易删除,数据量变得越来越多,尤其是对于日志类存储,写多读少。而HBase可构建在廉价的PC上,此外,HBase支持较多的压缩算法。
本篇文章将对HBase在腾讯大数据的应用情况做一个介绍。

HBase易用性建设
数据接入-方便、灵活
接入前台化、可配置化。只需在前台配置入库任务,按配置约定规范上报数据,即可实现将数据入库HBase,方便、简洁、快速。
与腾讯大数据的各平台(TDBank、TDW、TRC)打通,数据流转方便。
接入方式多样灵活。业务也可根据HBase提供的API自己编写代码,实现数据写入HBase。在写入量较大的情况下,业务侧还需要维护一批写入客户端,维护成本较高。一般不推荐使用这种方式。
数据查询-接口简单、易用
避免用户重复编码、方便业务查询HBase中的数据,我们封装并提供了两种查询接口:HTTP查询接口和TCP查询接口。同时支持点查询和范围查询两种查询方式。
HTTP查询接口:
通过发送HTTP POST请求方式查询数据。适用于轻量查询需求,例如客服业务受理查询,客户只要开发一个自己的界面就可以使用。返回的数据格式支持json、xml、text、idip(游戏业务定制的数据格式)四种。
TCP查询接口:
通过发送TCP请求建立长连接来查询数据。适用于大并发查询需求,例如营销活动、用户画像类数据查询需求等。返回的数据格式只提供protobuf格式。

安全建设
权限控制。每个接入业务均分配一个用户ID、IP白名单机制,只有在开通了白名单的服务器上,使用用户ID才可以访问归属业务的HBase表,当多个业务共用一个HBase的情况下,权限控制尤其必要。针对敏感数据(如用户画像数据),权限进一步控制到列级别。即只有在开通了白名单的服务器上,使用用户ID才可以访问开通了权限的HBase表中的某些列。
流量控制。控制单笔查询的数据量大小以及查询返回行数限制,同时监控大查询。在多个小业务公用一个HBase情况,可有效控制非必要场景下大量get数据业务间查询相互影响的问题。

业务应用情况
1. 游戏营销活动新渠道
数据的实时性对于营销活动的效果有着十分明显的影响,由于数据延迟而带来的不良用户体验会导致玩家丧失继续参与活动的耐心从而使活动效果大打折扣。HBase在近几次营销活动(如炫舞拉新活动、天天酷跑新版预热活动、英雄联盟3周年活动、天天酷跑周年活动、英雄联盟拉新活动)中,从几十亿甚至百亿条数据中实时拉取数据的毫秒级响应,成为营销活动的一个新渠道。
2. 广告日志处理
广告成为互联网公司的一个主要收入来源。我们现在每天通过HBase处理百亿级广告的请求和曝光日志,访问HBase的延迟,80%在20ms之内,保证了数据的秒级实时回流,实现检索、曝光、点击和效果日志百亿数据的实时关联,提供完整丰富的用户特征数据。精细的特征数据会带来更好的模型,产生更好的广告效果,进而提升广告收入。
3. 业务受理查询
业务受理系统受限于MySQL数据库容量与性能,仅能查询最近一段时间的日志,使游戏在核实客户投诉上较为被动。游戏业务受理系统由MySQL迁移到HBase后,用业务的评价来总结下MySQL迁移HBase的效果:“业务受理对客服的查询需求服务提升了一个档次”。
4. 此外,HBase在其他点击交互日志或监控日志系统上也有较多应用,如网络会话数据、秒级监控平台日志、微信支付日志等。

结束语
随着业务的发展以及HBase在腾讯的较多的成功应用案例与推广,HBase的应用还将继续增多以及向核心应用靠近的趋势。总的来说,我们的目标,降低接入使用门槛以及使用成本,使HBase能稳定地部署到更多的应用中去, 以助力业务更快发展。

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
58 4
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
91 1
|
17天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
1月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
57 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
1月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
89 2
ly~
|
1月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
286 2
ly~
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
109 2
ly~
|
1月前
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
371 2
|
2月前
|
存储 数据可视化 大数据
大数据管理与应用
大数据管理与应用是一门融合数学、统计学和计算机科学的新兴专业,涵盖数据采集、存储、处理、分析及应用,旨在帮助企业高效决策和提升竞争力。核心课程包括数据库原理、数据挖掘、大数据分析技术等,覆盖数据处理全流程。毕业生可从事数据分析、大数据开发、数据管理等岗位,广泛应用于企业、金融及互联网领域。随着数字化转型加速,该专业需求旺盛,前景广阔。
131 5
|
2月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
107 6