[LeetCode] Clone Graph

简介: This problem is an application of graph traversal, which has two systematic methods: Bread-First Search (BFS) and Depth-First Search (DFS).

 

This problem is an application of graph traversal, which has two systematic methods: Bread-First Search (BFS) and Depth-First Search (DFS). In the following, I am going to assume that you are familiar with them and just focus on what I think is the most tricky part of this problem, that is, what else is needed beyond graph traversal to clone a graph?

In order to clone a graph, you need to have a copy of each node in the original graph. Well, you may not have too many ideas about it. Let's do an example.

Suppose we are given a graph {0, 1 # 1, 0}. We know that the graph has two nodes 0 and1 and they are connected to each other.

We now start from 0. We make a copy of 0. Then we check 0's neighbors and we see 1. We make a copy of 1 and we add the copy to the neighbors of the copy of 0. Now the cloned graph is {0 (copy), 1 (copy)}. Then we visit 1. We make a copy of 1... well, wait, why do we make another copy of it? We already have one! Note that if you make a new copy of the node, these copies are not the same and the graph structure will be wrong! This is just what I mean by "the most tricky part of this problem". In fact, we need to maintain a mapping from each node to its copy. If the node has an existed copy, we simply use it. So in the above example, the remaining process is that we visit the copy of 1 and add the copy of 0 to its neighbors and the cloned graph is eventually {0 (copy), 1 (copy) # 1 (copy), 0 (copy)}.

Note that the above process uses BFS. Of course, you can use DFS. The key is the node-copy mapping, anyway.


BFS 

 1 class Solution {
 2 public:
 3     UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
 4         if (!node) return NULL;
 5         UndirectedGraphNode* copy = new UndirectedGraphNode(node -> label);
 6         mp[node] = copy;
 7         queue<UndirectedGraphNode*> toVisit;
 8         toVisit.push(node);
 9         while (!toVisit.empty()) {
10             UndirectedGraphNode* cur = toVisit.front();
11             toVisit.pop();
12             for (int i = 0; i < (int)cur -> neighbors.size(); i++) {
13                 UndirectedGraphNode* neigh = cur -> neighbors[i];
14                 if (mp.find(neigh) == mp.end()) {
15                     UndirectedGraphNode* neigh_copy = new UndirectedGraphNode(neigh -> label);
16                     mp[neigh] = neigh_copy;
17                     toVisit.push(neigh);
18                 }
19                 mp[cur] -> neighbors.push_back(mp[neigh]);
20             }
21         }
22         return copy;
23     }
24 private:
25     unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> mp;
26 };

DFS

This very succinct DFS code is taken from this post.

 1 class Solution {
 2 public:
 3     UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
 4         if (!node) return NULL;
 5         if (mp.find(node) == mp.end()) {
 6             mp[node] = new UndirectedGraphNode(node -> label);
 7             for (UndirectedGraphNode* neigh : node -> neighbors)
 8                 mp[node] -> neighbors.push_back(cloneGraph(neigh));
 9         }
10         return mp[node];
11     }
12 private:
13     unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> mp;
14 };

If you want to learn more about this problem, you may refer to this article.

 

目录
相关文章
|
Python
LeetCode 133:克隆图 Clone Graph
题目: 给定无向连通图中一个节点的引用,返回该图的深拷贝(克隆)。图中的每个节点都包含它的值 val(Int) 和其邻居的列表(list[Node])。 Given a reference of a node in a connected undirected graph, return a deep copy (clone) of the graph.
981 0
[LeetCode] Graph Valid Tree
Problem Description: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
748 0
【LeetCode从零单排】No133. clon graph (BFS广度优先搜索)
背景 (以下背景资料转载自:http://www.cnblogs.com/springfor/p/3874591.html?utm_source=tuicool) DFS(Dpeth-first Search)顾名思义,就是深度搜索,一条路走到黑,再选新的路。记得上Algorithm的时候,教授举得例子就是说,DFS很像好奇的小孩,你给这个小孩几个盒子套盒子,好奇的小孩肯定会一个盒子打开后继
1189 0
|
2天前
|
算法 C++
【刷题】Leetcode 1609.奇偶树
这道题是我目前做过最难的题,虽然没有一遍做出来,但是参考大佬的代码,慢慢啃的感觉的真的很好。刷题继续!!!!!!
9 0
|
2天前
|
算法 索引
【刷题】滑动窗口精通 — Leetcode 30. 串联所有单词的子串 | Leetcode 76. 最小覆盖子串
经过这两道题目的书写,相信大家一定深刻认识到了滑动窗口的使用方法!!! 下面请大家继续刷题吧!!!
12 0
|
2天前
|
算法
【刷题】 leetcode 面试题 08.05.递归乘法
递归算法是一种在计算机科学和数学中广泛应用的解决问题的方法,其基本思想是利用问题的自我相似性,即将一个大问题分解为一个或多个相同或相似的小问题来解决。递归算法的核心在于函数(或过程)能够直接或间接地调用自身来求解问题的不同部分,直到达到基本情况(也称为基础案例或终止条件),这时可以直接得出答案而不必再进行递归调用。
25 4
【刷题】 leetcode 面试题 08.05.递归乘法
|
2天前
|
存储 算法 安全
【刷题】 leetcode 面试题 01.06 字符串压缩
来看效果: 非常好!!!过啦!!!
25 5
【刷题】 leetcode 面试题 01.06 字符串压缩