Flume日志采集系统——初体验(Logstash对比版)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介:

这两天看了一下Flume的开发文档,并且体验了下Flume的使用。

本文就从如下的几个方面讲述下我的使用心得:

  • 初体验——与Logstash的对比
  • 安装部署
  • 启动教程
  • 参数与实例分析

Flume初体验

Flume的配置是真繁琐,source,channel,sink的关系在配置文件里面交织在一起,没有Logstash那么简单明了。

Flume与Logstash相比,我个人的体会如下:

  • Logstash比较偏重于字段的预处理;而Flume偏重数据的传输;
  • Logstash有几十个插件,配置灵活;FLume则是强调用户的自定义开发(source和sink的种类也有一二十个吧,channel就比较少了)。
  • Logstash的input和filter还有output之间都存在buffer,进行缓冲;Flume直接使用channel做持久化(可以理解为没有filter)

Logstash浅谈:

Logstash中:

  • input负责数据的输入(产生或者说是搜集,以及解码decode);
  • Filter负责对采集的日志进行分析,提取字段(一般都是提取关键的字段,存储到elasticsearch中进行检索分析);
  • output负责把数据输出到指定的存储位置(如果是采集agent,则一般是发送到消息队列中,如kafka,redis,mq;如果是分析汇总端,则一般是发送到elasticsearch中)

在Logstash比较看重input,filter,output之间的协同工作,因此多个输入会把数据汇总到input和filter之间的buffer中。filter则会从buffer中读取数据,进行过滤解析,然后存储在filter于output之间的Buffer中。当buffer满足一定的条件时,会触发output的刷新。

Flume浅谈:

在Flume中:

  • source 负责与Input同样的角色,负责数据的产生或搜集(一般是对接一些RPC的程序或者是其他的flume节点的sink)
  • channel 负责数据的存储持久化(一般都是memory或者file两种)
  • sink 负责数据的转发(用于转发给下一个flume的source或者最终的存储点——如HDFS)

Flume比较看重数据的传输,因此几乎没有数据的解析预处理。仅仅是数据的产生,封装成event然后传输。传输的时候flume比logstash多考虑了一些可靠性。因为数据会持久化在channel中(一般有两种可以选择,memoryChannel就是存在内存中,另一个就是FileChannel存储在文件种),数据只有存储在下一个存储位置(可能是最终的存储位置,如HDFS;也可能是下一个Flume节点的channel),数据才会从当前的channel中删除。这个过程是通过事务来控制的,这样就保证了数据的可靠性。

不过flume的持久化也是有容量限制的,比如内存如果超过一定的量,也一样会爆掉。

安装

在官网下载最新版本http://flume.apache.org/download.html,目前最新的版本是1.6.0

默认flume是不支持windows的,没有bat的启动命令。不过有一个flume-ng.cmd,其实它也不是启动文件,只是启动了一个powershell而已,如果你本地有这个软件,就可以在windows下运行了。

powershell.exe -NoProfile -InputFormat none -ExecutionPolicy unrestricted -File %~dp0flume-ng.ps1 %*

目录介绍

bin

存放了启动脚本

lib

启动所需的所有组件jar包

conf

提供了几个测试配置文件

docs

文档

tools

跟日志输出有关的一个jar包(不知道有什么不同)

先来看看配置文件

# 关于license的一大堆 blabla

# 配置sources,channels,sinks的名称
agent.sources = seqGenSrc
agent.channels = memoryChannel
agent.sinks = loggerSink

# 配置sources是哪一种类型,注意可以由多个source哦!
# seq 是专门给测试用的,会自动产生一大堆数据。
# (其实我觉得stdin最好,不过flume没这个source)
agent.sources.seqGenSrc.type = seq

# 配置source输出的channel为memoryChannel(名称,你也可以叫c1)
agent.sources.seqGenSrc.channels = memoryChannel

# 配置sink是哪一种类型,本例子为logger,即log4j输出。
# (log4j会参考conf下的log4j.properties文件,一般开启consoleAppender做测试就行)
agent.sinks.loggerSink.type = logger

# 配置sink取数据的channel为memoryChannel,注意跟上面的名字保持一致哦!
agent.sinks.loggerSink.channel = memoryChannel

# 配置channel的类型
agent.channels.memoryChannel.type = memory

# 配置channel的容量
agent.channels.memoryChannel.capacity = 100

然后在flume目录下,输入下面的命令:

bin/flume-ng agent --conf-file conf/flume-conf.properties.template --name agent -Dflume.root.logger=INFO,console -C .

然后就可以看到满屏滚动的信息了!

注意:上面启动命令没一个字母是废话!

启动参数详解

你可以输入flume-ng help 获得帮助提示:

[root@10 /xinghl/flume]$ bin/flume-ng hekp
Usage: bin/flume-ng <command> [options]...

commands:
  help                      display this help text
  agent                     run a Flume agent
  avro-client               run an avro Flume client
  version                   show Flume version info

global options:
  --conf,-c <conf>          use configs in <conf> directory
  --classpath,-C <cp>       append to the classpath
  --dryrun,-d               do not actually start Flume, just print the command
  --plugins-path <dirs>     colon-separated list of plugins.d directories. See the
                            plugins.d section in the user guide for more details.
                            Default: $FLUME_HOME/plugins.d
  -Dproperty=value          sets a Java system property value
  -Xproperty=value          sets a Java -X option

agent options:
  --name,-n <name>          the name of this agent (required)
  --conf-file,-f <file>     specify a config file (required if -z missing)
  --zkConnString,-z <str>   specify the ZooKeeper connection to use (required if -f missing)
  --zkBasePath,-p <path>    specify the base path in ZooKeeper for agent configs
  --no-reload-conf          do not reload config file if changed
  --help,-h                 display help text

avro-client options:
  --rpcProps,-P <file>   RPC client properties file with server connection params
  --host,-H <host>       hostname to which events will be sent
  --port,-p <port>       port of the avro source
  --dirname <dir>        directory to stream to avro source
  --filename,-F <file>   text file to stream to avro source (default: std input)
  --headerFile,-R <file> File containing event headers as key/value pairs on each new line
  --help,-h              display help text

  Either --rpcProps or both --host and --port must be specified.

这里就挑重要的参数将了:

commands 命令参数

这个是很重要的参数,因为flume可以使用不同的角色启动,比如agent以及client等等。暂时搞不清楚avro-client有什么特殊的,先了解一下吧!平时启动就使用agent就可以了。

global options 全局参数

--conf 或者 -c ,指定去conf目录下加载配置文件
--classpath 或者 -C,指定类加载的路径(不知道为什么我下载flume版本启动的时候找不到log4j配置,只能加上 -C .才能启动!)

command 指定

-Dproperty=value 这个参数比较重要,比如logger就需要它来指定传输的级别等信息。如果没有这个参数,logger就不好使了。

agent options agent启动选项

其中最终要的就是 --name 或者 -n ,它指定了启动agent的名称,注意是启动agent的名称。

这个名称必须与配置文件中的一样
这个名称必须与配置文件中的一样
这个名称必须与配置文件中的一样

重要的事情重复三遍!

如果写错了!一段小异常就跑来了~(比如我配置文件中为agent,启动命令中写agent123)

2016-06-30 17:04:19,529 (conf-file-poller-0) [WARN - org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:133)] No configuration found for this host:agent123

另外,就是通过--conf-file 或者 -f 指定配置文件。如果配置文件放在conf,也等同于--conf。

参数就介绍到这里了。

参考

Flume开发者指南

Flume使用指南

本文转自博客园xingoo的博客,原文链接:Flume日志采集系统——初体验(Logstash对比版),如需转载请自行联系原博主。
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
17天前
|
存储 安全 Java
Spring Boot 3 集成Spring AOP实现系统日志记录
本文介绍了如何在Spring Boot 3中集成Spring AOP实现系统日志记录功能。通过定义`SysLog`注解和配置相应的AOP切面,可以在方法执行前后自动记录日志信息,包括操作的开始时间、结束时间、请求参数、返回结果、异常信息等,并将这些信息保存到数据库中。此外,还使用了`ThreadLocal`变量来存储每个线程独立的日志数据,确保线程安全。文中还展示了项目实战中的部分代码片段,以及基于Spring Boot 3 + Vue 3构建的快速开发框架的简介与内置功能列表。此框架结合了当前主流技术栈,提供了用户管理、权限控制、接口文档自动生成等多项实用特性。
69 8
|
1月前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。
|
2月前
|
存储 监控 安全
|
2月前
|
存储 Linux Docker
centos系统清理docker日志文件
通过以上方法,可以有效清理和管理CentOS系统中的Docker日志文件,防止日志文件占用过多磁盘空间。选择合适的方法取决于具体的应用场景和需求,可以结合手动清理、logrotate和调整日志驱动等多种方式,确保系统的高效运行。
244 2
|
2月前
|
存储 JSON 监控
开源日志分析Logstash
【10月更文挑战第22天】
73 1
|
3月前
|
XML JSON 监控
告别简陋:Java日志系统的最佳实践
【10月更文挑战第19天】 在Java开发中,`System.out.println()` 是最基本的输出方法,但它在实际项目中往往被认为是不专业和不足够的。本文将探讨为什么在现代Java应用中应该避免使用 `System.out.println()`,并介绍几种更先进的日志解决方案。
93 1
|
3月前
|
监控 网络协议 安全
Linux系统日志管理
Linux系统日志管理
79 3
|
2月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
782 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
1月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
|
3月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
419 3