Compute Mean Value of Train and Test Dataset of Caltech-256 dataset in matlab code

简介: Compute Mean Value of Train and Test Dataset of Caltech-256 dataset in matlab code    clc;imPath = '/home/wangxiao/Downloads/Link to caltech_256_...

 

Compute Mean Value of Train and Test Dataset of Caltech-256 dataset in matlab code 

 

clc;
imPath = '/home/wangxiao/Downloads/Link to caltech_256_dataset/image_/ori_total_im_/';
imageFiles = dir(imPath);

train_txtFile = '/home/wangxiao/Downloads/caltech256_whole_data_/train_caltech_label.txt';
test_txtFile = '/home/wangxiao/Downloads/caltech256_whole_data_/test_caltech_label.txt';
train_list = importdata(train_txtFile);
test_list = importdata(test_txtFile);

train_R = 0; train_G = 0; train_B = 0;
test_R = 0; test_G = 0; test_B = 0;

for i = 1:size(train_list, 1)
train_im_name = train_list.textdata{i, 1} ;
train_image = imread([imPath, train_im_name]);
train_image = double(train_image);

train_R = train_R + mean(mean( train_image(:, :, 1) ));
train_G = train_G +mean(mean( train_image(:, :, 2) ));
train_B = train_B + mean(mean( train_image(:, :, 3) ));

end

for i = 1:size(test_list, 1)
test_im_name = test_list.textdata{i, 1} ;
test_image = imread([imPath, test_im_name]);
% imshow(test_image);
test_image = double(test_image);

test_R = test_R +mean(mean( test_image(:, :, 1) )) ;
test_G = test_G +mean(mean( test_image(:, :, 2) )) ;
test_B = test_B +mean(mean( test_image(:, :, 3) )) ;

end

 

mean_train_R = train_R / size(train_list, 1);
mean_train_G = train_G / size(train_list, 1);
mean_train_B = train_B / size(train_list, 1);

mean_test_R = test_R / size(test_list, 1);
mean_test_G = test_G / size(test_list, 1);
mean_test_B = test_B / size(test_list, 1);

 

 

 

 

 

 

 

相关文章
|
API 数据格式
TensorFlow2._:model.summary() Output Shape为multiple解决方法
TensorFlow2._:model.summary() Output Shape为multiple解决方法
308 0
TensorFlow2._:model.summary() Output Shape为multiple解决方法
|
Serverless
train_test_split.py代码解释
这段代码用于将MovieLens 1M数据集的评分数据划分为训练集和测试集。 • 首先,使用Path库获取当前文件的父级目录,也就是项目根目录。 • 接着,定义输出训练集和测试集文件的路径。
192 0
|
SQL 分布式计算 安全
Dataset 介绍_Dataset 是什么 | 学习笔记
快速学习 Dataset 介绍_Dataset 是什么
310 0
Dataset 介绍_Dataset 是什么 | 学习笔记
from sklearn.cross_validation import train_test_split发生报错
from sklearn.cross_validation import train_test_split发生报错
293 0
from sklearn.cross_validation import train_test_split发生报错
Dataset之MNIST:自定义函数mnist.load_mnist根据网址下载mnist数据集(四个ubyte.gz格式数据集文件)
Dataset之MNIST:自定义函数mnist.load_mnist根据网址下载mnist数据集(四个ubyte.gz格式数据集文件)
Dataset之MNIST:自定义函数mnist.load_mnist根据网址下载mnist数据集(四个ubyte.gz格式数据集文件)
成功解决sklearn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is amb
成功解决sklearn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is amb
|
Python
使用Numpy将数据集中的data和target同时shuffle
假设现在有图像数据imgs和对应标签targets。数据维度分别如下 imgs.shape = (num, channel, width, height) targets.shape = (num, class) 因为通常我们需要将数据打散,这样的好处是可以让模型训练更具鲁棒性,那么如何同时打散da...
1402 0
|
算法
Fashion-MNIST:A MNIST-like fashion product database. Benchmark
Zalando的文章图像的一个数据集包括一个训练集6万个例子和一个10,000个例子的测试集。 每个示例是一个28x28灰度图像,与10个类别的标签相关联。
1316 0

热门文章

最新文章