x264代码剖析(五):encode()函数之x264_encoder_open()函数

简介: <h1 style="text-align:center">x264<span style="font-family:宋体">代码剖析(五):</span><span style="font-family:Calibri">encode()</span><span style="font-family:宋体">函数之</span><span style="font-family:Calib

x264代码剖析(五):encode()函数之x264_encoder_open()函数

 

        我们知道x264源码从主观上分为两大块,一是解析函数parse(),另一个是编码函数encode()。解析函数parse()较简单,并且不涉及H.264编码算法,故不是重点,所以我们要学习的重点自然而然地就是编码函数encode()了。

 

        encode()函数是x264的主干函数,主要包括x264_encoder_open()函数、x264_encoder_headers()函数、x264_encoder_encode()函数与x264_encoder_close()函数四大部分,如下图所示,其中x264_encoder_encode()函数是其核心部分,具体的H.264视频编码算法均在此模块。




        本文主要分析x264_encoder_open()函数,x264_encoder_open()用于打开编码器,其中初始化了libx264编码所需要的各种变量,如下图所示。它调用了下面的函数:

x264_validate_parameters():检查输入参数(例如输入图像的宽高是否为正数)。

x264_sps_init():初始化SPS

x264_pps_init():初始化PPS

x264_predict_16x16_init():初始化Intra16x16帧内预测汇编函数。

x264_predict_4x4_init():初始化Intra4x4帧内预测汇编函数。

x264_pixel_init():初始化像素值计算相关的汇编函数(包括SADSATDSSD等)。

x264_dct_init():初始化DCT变换和DCT反变换相关的汇编函数。

x264_mc_init():初始化运动补偿相关的汇编函数。

x264_quant_init():初始化量化和反量化相关的汇编函数。

x264_deblock_init():初始化去块效应滤波器相关的汇编函数。

x264_lookahead_init():初始化Lookahead相关的变量。

x264_ratecontrol_new():初始化码率控制相关的变量。




        对应的代码如下:

/******************************************************************/
/******************************************************************/
/*
======Analysed by RuiDong Fang
======Csdn Blog:http://blog.csdn.net/frd2009041510
======Date:2016.03.08
 */
/******************************************************************/
/******************************************************************/

/************====== x264_encoder_open()函数 ======************/
/*
功能:打开编码器
*/
/****************************************************************************
 * x264_encoder_open:
 ****************************************************************************/
x264_t *x264_encoder_open( x264_param_t *param )
{
    x264_t *h;
    char buf[1000], *p;
    int i_slicetype_length;

    CHECKED_MALLOCZERO( h, sizeof(x264_t) );

    /* Create a copy of param */
    memcpy( &h->param, param, sizeof(x264_param_t) );	//将参数拷贝进来

    if( param->param_free )
        param->param_free( param );

#if HAVE_INTEL_DISPATCHER
    x264_intel_dispatcher_override();
#endif

    if( x264_threading_init() )
    {
        x264_log( h, X264_LOG_ERROR, "unable to initialize threading\n" );
        goto fail;
    }

    if( x264_validate_parameters( h, 1 ) < 0 )	////////////////////////检查输入参数(例如输入图像的宽高是否为正数)
        goto fail;

    if( h->param.psz_cqm_file )
        if( x264_cqm_parse_file( h, h->param.psz_cqm_file ) < 0 )
            goto fail;

    if( h->param.rc.psz_stat_out )
        h->param.rc.psz_stat_out = strdup( h->param.rc.psz_stat_out );
    if( h->param.rc.psz_stat_in )
        h->param.rc.psz_stat_in = strdup( h->param.rc.psz_stat_in );

    x264_reduce_fraction( &h->param.i_fps_num, &h->param.i_fps_den );
    x264_reduce_fraction( &h->param.i_timebase_num, &h->param.i_timebase_den );

    /* Init x264_t */
    h->i_frame = -1;
    h->i_frame_num = 0;

    if( h->param.i_avcintra_class )
        h->i_idr_pic_id = 5;
    else
        h->i_idr_pic_id = 0;

    if( (uint64_t)h->param.i_timebase_den * 2 > UINT32_MAX )
    {
        x264_log( h, X264_LOG_ERROR, "Effective timebase denominator %u exceeds H.264 maximum\n", h->param.i_timebase_den );
        goto fail;
    }

    x264_set_aspect_ratio( h, &h->param, 1 );

	//x264_sps_init()根据输入参数生成H.264码流的SPS (Sequence Parameter Set,序列参数集)信息
    x264_sps_init( h->sps, h->param.i_sps_id, &h->param );	////////////////////////初始化SPS
	//x264_pps_init()根据输入参数生成H.264码流的PPS(Picture Parameter Set,图像参数集)信息
    x264_pps_init( h->pps, h->param.i_sps_id, &h->param, h->sps );	////////////////////////初始化PPS

    x264_validate_levels( h, 1 );	//检查级Level-通过宏块个数等等

    h->chroma_qp_table = i_chroma_qp_table + 12 + h->pps->i_chroma_qp_index_offset;

    if( x264_cqm_init( h ) < 0 )
        goto fail;
	
	//赋值
    h->mb.i_mb_width = h->sps->i_mb_width;
    h->mb.i_mb_height = h->sps->i_mb_height;
    h->mb.i_mb_count = h->mb.i_mb_width * h->mb.i_mb_height;

    h->mb.chroma_h_shift = CHROMA_FORMAT == CHROMA_420 || CHROMA_FORMAT == CHROMA_422;
    h->mb.chroma_v_shift = CHROMA_FORMAT == CHROMA_420;

    /* Adaptive MBAFF and subme 0 are not supported as we require halving motion
     * vectors during prediction, resulting in hpel mvs.
     * The chosen solution is to make MBAFF non-adaptive in this case. */
    h->mb.b_adaptive_mbaff = PARAM_INTERLACED && h->param.analyse.i_subpel_refine;

    /* Init frames. */
    if( h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS && !h->param.rc.b_stat_read )
        h->frames.i_delay = X264_MAX(h->param.i_bframe,3)*4;
    else
        h->frames.i_delay = h->param.i_bframe;
    if( h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size )
        h->frames.i_delay = X264_MAX( h->frames.i_delay, h->param.rc.i_lookahead );
    i_slicetype_length = h->frames.i_delay;
    h->frames.i_delay += h->i_thread_frames - 1;
    h->frames.i_delay += h->param.i_sync_lookahead;
    h->frames.i_delay += h->param.b_vfr_input;
    h->frames.i_bframe_delay = h->param.i_bframe ? (h->param.i_bframe_pyramid ? 2 : 1) : 0;

    h->frames.i_max_ref0 = h->param.i_frame_reference;
    h->frames.i_max_ref1 = X264_MIN( h->sps->vui.i_num_reorder_frames, h->param.i_frame_reference );
    h->frames.i_max_dpb  = h->sps->vui.i_max_dec_frame_buffering;
    h->frames.b_have_lowres = !h->param.rc.b_stat_read
        && ( h->param.rc.i_rc_method == X264_RC_ABR
          || h->param.rc.i_rc_method == X264_RC_CRF
          || h->param.i_bframe_adaptive
          || h->param.i_scenecut_threshold
          || h->param.rc.b_mb_tree
          || h->param.analyse.i_weighted_pred );
    h->frames.b_have_lowres |= h->param.rc.b_stat_read && h->param.rc.i_vbv_buffer_size > 0;
    h->frames.b_have_sub8x8_esa = !!(h->param.analyse.inter & X264_ANALYSE_PSUB8x8);

    h->frames.i_last_idr =
    h->frames.i_last_keyframe = - h->param.i_keyint_max;
    h->frames.i_input    = 0;
    h->frames.i_largest_pts = h->frames.i_second_largest_pts = -1;
    h->frames.i_poc_last_open_gop = -1;

	//CHECKED_MALLOCZERO(var, size)  
    //调用malloc()分配内存,然后调用memset()置零
    CHECKED_MALLOCZERO( h->frames.unused[0], (h->frames.i_delay + 3) * sizeof(x264_frame_t *) );
    /* Allocate room for max refs plus a few extra just in case. */
    CHECKED_MALLOCZERO( h->frames.unused[1], (h->i_thread_frames + X264_REF_MAX + 4) * sizeof(x264_frame_t *) );
    CHECKED_MALLOCZERO( h->frames.current, (h->param.i_sync_lookahead + h->param.i_bframe
                        + h->i_thread_frames + 3) * sizeof(x264_frame_t *) );
    if( h->param.analyse.i_weighted_pred > 0 )
        CHECKED_MALLOCZERO( h->frames.blank_unused, h->i_thread_frames * 4 * sizeof(x264_frame_t *) );
    h->i_ref[0] = h->i_ref[1] = 0;
    h->i_cpb_delay = h->i_coded_fields = h->i_disp_fields = 0;
    h->i_prev_duration = ((uint64_t)h->param.i_fps_den * h->sps->vui.i_time_scale) / ((uint64_t)h->param.i_fps_num * h->sps->vui.i_num_units_in_tick);
    h->i_disp_fields_last_frame = -1;
    x264_rdo_init();	///////////////////////////RDO初始化

    /* init CPU functions */
	//初始化包含汇编优化的函数  
    //帧内预测
    x264_predict_16x16_init( h->param.cpu, h->predict_16x16 );	///////////////////////////初始化Intra16x16帧内预测汇编函数(该函数的定义位于x264\common\predict.c)
    x264_predict_8x8c_init( h->param.cpu, h->predict_8x8c );
    x264_predict_8x16c_init( h->param.cpu, h->predict_8x16c );
    x264_predict_8x8_init( h->param.cpu, h->predict_8x8, &h->predict_8x8_filter );
    x264_predict_4x4_init( h->param.cpu, h->predict_4x4 );	///////////////////////////初始化Intra4x4帧内预测汇编函数
    
	x264_pixel_init( h->param.cpu, &h->pixf );	///////////////////////////初始化像素值计算相关的汇编函数(包括SAD、SATD、SSD等)(该函数的定义位于common\pixel.c)
    x264_dct_init( h->param.cpu, &h->dctf );	///////////////////////////初始化DCT变换和DCT反变换相关的汇编函数(该函数的定义位于common\dct.c)
    x264_zigzag_init( h->param.cpu, &h->zigzagf_progressive, &h->zigzagf_interlaced );//“之”字扫描
    memcpy( &h->zigzagf, PARAM_INTERLACED ? &h->zigzagf_interlaced : &h->zigzagf_progressive, sizeof(h->zigzagf) );
    x264_mc_init( h->param.cpu, &h->mc, h->param.b_cpu_independent );	///////////////////////////初始化运动补偿相关的汇编函数(该函数的定义位于common\mc.c)
    x264_quant_init( h, h->param.cpu, &h->quantf );	///////////////////////////初始化量化和反量化相关的汇编函数(该函数的定义位于common\quant.c)
    x264_deblock_init( h->param.cpu, &h->loopf, PARAM_INTERLACED );	///////////////////////////初始化去块效应滤波器相关的汇编函数(该函数的定义位于common\deblock.c)
    x264_bitstream_init( h->param.cpu, &h->bsf );
	
	//初始化CABAC或者是CAVLC
    if( h->param.b_cabac )
        x264_cabac_init( h );
    else
        x264_stack_align( x264_cavlc_init, h );

	//决定了像素比较的时候用SAD还是SATD
    mbcmp_init( h );
    chroma_dsp_init( h );

	//CPU属性
    p = buf + sprintf( buf, "using cpu capabilities:" );
    for( int i = 0; x264_cpu_names[i].flags; i++ )
    {
        if( !strcmp(x264_cpu_names[i].name, "SSE")
            && h->param.cpu & (X264_CPU_SSE2) )
            continue;
        if( !strcmp(x264_cpu_names[i].name, "SSE2")
            && h->param.cpu & (X264_CPU_SSE2_IS_FAST|X264_CPU_SSE2_IS_SLOW) )
            continue;
        if( !strcmp(x264_cpu_names[i].name, "SSE3")
            && (h->param.cpu & X264_CPU_SSSE3 || !(h->param.cpu & X264_CPU_CACHELINE_64)) )
            continue;
        if( !strcmp(x264_cpu_names[i].name, "SSE4.1")
            && (h->param.cpu & X264_CPU_SSE42) )
            continue;
        if( !strcmp(x264_cpu_names[i].name, "BMI1")
            && (h->param.cpu & X264_CPU_BMI2) )
            continue;
        if( (h->param.cpu & x264_cpu_names[i].flags) == x264_cpu_names[i].flags
            && (!i || x264_cpu_names[i].flags != x264_cpu_names[i-1].flags) )
            p += sprintf( p, " %s", x264_cpu_names[i].name );
    }
    if( !h->param.cpu )
        p += sprintf( p, " none!" );
    x264_log( h, X264_LOG_INFO, "%s\n", buf );

    if( x264_analyse_init_costs( h ) )
        goto fail;

    static const uint16_t cost_mv_correct[7] = { 24, 47, 95, 189, 379, 757, 1515 };
    /* Checks for known miscompilation issues. */
    if( h->cost_mv[X264_LOOKAHEAD_QP][2013] != cost_mv_correct[BIT_DEPTH-8] )
    {
        x264_log( h, X264_LOG_ERROR, "MV cost test failed: x264 has been miscompiled!\n" );
        goto fail;
    }

    /* Must be volatile or else GCC will optimize it out. */
    volatile int temp = 392;
    if( x264_clz( temp ) != 23 )
    {
        x264_log( h, X264_LOG_ERROR, "CLZ test failed: x264 has been miscompiled!\n" );
#if ARCH_X86 || ARCH_X86_64
        x264_log( h, X264_LOG_ERROR, "Are you attempting to run an SSE4a/LZCNT-targeted build on a CPU that\n" );
        x264_log( h, X264_LOG_ERROR, "doesn't support it?\n" );
#endif
        goto fail;
    }

    h->out.i_nal = 0;
    h->out.i_bitstream = X264_MAX( 1000000, h->param.i_width * h->param.i_height * 4
        * ( h->param.rc.i_rc_method == X264_RC_ABR ? pow( 0.95, h->param.rc.i_qp_min )
          : pow( 0.95, h->param.rc.i_qp_constant ) * X264_MAX( 1, h->param.rc.f_ip_factor )));

    h->nal_buffer_size = h->out.i_bitstream * 3/2 + 4 + 64; /* +4 for startcode, +64 for nal_escape assembly padding */
    CHECKED_MALLOC( h->nal_buffer, h->nal_buffer_size );

    CHECKED_MALLOC( h->reconfig_h, sizeof(x264_t) );

    if( h->param.i_threads > 1 &&
        x264_threadpool_init( &h->threadpool, h->param.i_threads, (void*)x264_encoder_thread_init, h ) )
        goto fail;
    if( h->param.i_lookahead_threads > 1 &&
        x264_threadpool_init( &h->lookaheadpool, h->param.i_lookahead_threads, NULL, NULL ) )
        goto fail;

#if HAVE_OPENCL
    if( h->param.b_opencl )
    {
        h->opencl.ocl = x264_opencl_load_library();
        if( !h->opencl.ocl )
        {
            x264_log( h, X264_LOG_WARNING, "failed to load OpenCL\n" );
            h->param.b_opencl = 0;
        }
    }
#endif

    h->thread[0] = h;
    for( int i = 1; i < h->param.i_threads + !!h->param.i_sync_lookahead; i++ )
        CHECKED_MALLOC( h->thread[i], sizeof(x264_t) );
    if( h->param.i_lookahead_threads > 1 )
        for( int i = 0; i < h->param.i_lookahead_threads; i++ )
        {
            CHECKED_MALLOC( h->lookahead_thread[i], sizeof(x264_t) );
            *h->lookahead_thread[i] = *h;
        }
    *h->reconfig_h = *h;

    for( int i = 0; i < h->param.i_threads; i++ )
    {
        int init_nal_count = h->param.i_slice_count + 3;
        int allocate_threadlocal_data = !h->param.b_sliced_threads || !i;
        if( i > 0 )
            *h->thread[i] = *h;

        if( x264_pthread_mutex_init( &h->thread[i]->mutex, NULL ) )
            goto fail;
        if( x264_pthread_cond_init( &h->thread[i]->cv, NULL ) )
            goto fail;

        if( allocate_threadlocal_data )
        {
            h->thread[i]->fdec = x264_frame_pop_unused( h, 1 );
            if( !h->thread[i]->fdec )
                goto fail;
        }
        else
            h->thread[i]->fdec = h->thread[0]->fdec;

        CHECKED_MALLOC( h->thread[i]->out.p_bitstream, h->out.i_bitstream );
        /* Start each thread with room for init_nal_count NAL units; it'll realloc later if needed. */
        CHECKED_MALLOC( h->thread[i]->out.nal, init_nal_count*sizeof(x264_nal_t) );
        h->thread[i]->out.i_nals_allocated = init_nal_count;

        if( allocate_threadlocal_data && x264_macroblock_cache_allocate( h->thread[i] ) < 0 )
            goto fail;
    }

#if HAVE_OPENCL
    if( h->param.b_opencl && x264_opencl_lookahead_init( h ) < 0 )
        h->param.b_opencl = 0;
#endif

    if( x264_lookahead_init( h, i_slicetype_length ) )	///////////////////////////初始化lookahead
        goto fail;

    for( int i = 0; i < h->param.i_threads; i++ )
        if( x264_macroblock_thread_allocate( h->thread[i], 0 ) < 0 )
            goto fail;

    if( x264_ratecontrol_new( h ) < 0 )	///////////////////////////创建码率控制
        goto fail;

    if( h->param.i_nal_hrd )
    {
        x264_log( h, X264_LOG_DEBUG, "HRD bitrate: %i bits/sec\n", h->sps->vui.hrd.i_bit_rate_unscaled );
        x264_log( h, X264_LOG_DEBUG, "CPB size: %i bits\n", h->sps->vui.hrd.i_cpb_size_unscaled );
    }

    if( h->param.psz_dump_yuv )
    {
        /* create or truncate the reconstructed video file */
        FILE *f = x264_fopen( h->param.psz_dump_yuv, "w" );
        if( !f )
        {
            x264_log( h, X264_LOG_ERROR, "dump_yuv: can't write to %s\n", h->param.psz_dump_yuv );
            goto fail;
        }
        else if( !x264_is_regular_file( f ) )
        {
            x264_log( h, X264_LOG_ERROR, "dump_yuv: incompatible with non-regular file %s\n", h->param.psz_dump_yuv );
            fclose( f );
            goto fail;
        }
        fclose( f );
    }

    const char *profile = h->sps->i_profile_idc == PROFILE_BASELINE ? "Constrained Baseline" :
                          h->sps->i_profile_idc == PROFILE_MAIN ? "Main" :
                          h->sps->i_profile_idc == PROFILE_HIGH ? "High" :
                          h->sps->i_profile_idc == PROFILE_HIGH10 ? (h->sps->b_constraint_set3 == 1 ? "High 10 Intra" : "High 10") :
                          h->sps->i_profile_idc == PROFILE_HIGH422 ? (h->sps->b_constraint_set3 == 1 ? "High 4:2:2 Intra" : "High 4:2:2") :
                          h->sps->b_constraint_set3 == 1 ? "High 4:4:4 Intra" : "High 4:4:4 Predictive";
    char level[4];
    snprintf( level, sizeof(level), "%d.%d", h->sps->i_level_idc/10, h->sps->i_level_idc%10 );
    if( h->sps->i_level_idc == 9 || ( h->sps->i_level_idc == 11 && h->sps->b_constraint_set3 &&
        (h->sps->i_profile_idc == PROFILE_BASELINE || h->sps->i_profile_idc == PROFILE_MAIN) ) )
        strcpy( level, "1b" );

    if( h->sps->i_profile_idc < PROFILE_HIGH10 )	//输出型和级
    {
        x264_log( h, X264_LOG_INFO, "profile %s, level %s\n",
            profile, level );
    }
    else
    {
        static const char * const subsampling[4] = { "4:0:0", "4:2:0", "4:2:2", "4:4:4" };
        x264_log( h, X264_LOG_INFO, "profile %s, level %s, %s %d-bit\n",
            profile, level, subsampling[CHROMA_FORMAT], BIT_DEPTH );
    }

    return h;
fail:
    x264_free( h );	//释放
    return NULL;
}


目录
相关文章
|
17天前
|
JSON JavaScript API
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) 错误分析
本文探讨了Python中处理JSON数据时遇到的`JSONDecodeError`,该错误通常由JSON格式错误或数据源问题引起。解决方法包括检查数据源、使用异常处理机制和调试日志记录。示例代码展示了如何从文件和API读取JSON并处理异常。注意事项涉及验证JSON规范、处理特殊字符和选择合适解析器。通过这些步骤,可以有效解决JSON解码错误,确保数据正确解析。
20 0
|
8月前
ffmpeg编码报错:more samples than frame size (avcodec_encode_audio2)
ffmpeg编码报错:more samples than frame size (avcodec_encode_audio2)
50 0
ffmpeg编码报错:more samples than frame size (avcodec_encode_audio2)
|
8月前
|
Python
Python3 ‘str‘ object has no attribute ‘decode‘. Did you mean: ‘encode‘?
Python3 ‘str‘ object has no attribute ‘decode‘. Did you mean: ‘encode‘?
171 0
|
11月前
|
Cloud Native 关系型数据库 OLAP
可以使用内置的函数`encode()`
可以使用内置的函数`encode()`
104 0
|
存储 Linux Python
Python文件相关知识点strip、open、read、write、close、readline、readlines、encoding、encode、decode
文件的作用: 可以永久的保存数据. 文件在硬盘中存储的格式是二进制. 打开文件 读写文件 关闭文件 打开文件, 是文件从硬盘中存到内存中 open(file, mode=‘r’, encoding) file 要操作的文件名字, 类型是 str mode, 文件打开的方式, r(read) 只读打开, w(write) 只写打开 a(append) 追加打开 encoding 文件的编码格式, 常见的编码格式有两种, 一种是gbk, 一种是utf-8 返回值, 文件对象, 后续所有的文件操作,都需要通
287 1
Python文件相关知识点strip、open、read、write、close、readline、readlines、encoding、encode、decode
|
编解码 算法 数据挖掘
成功解决Python中导出图片出现错误SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position
成功解决Python中导出图片出现错误SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position
成功解决Python中导出图片出现错误SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position
|
Python
Python编码介绍——encode和decode
在 python 源代码文件中,如果你有用到非ASCII字符,则需要在文件头部进行字符编码的声明,声明如下: # code: UTF-8 因为python 只检查 #、coding 和编码字符串,所以你可能回见到下面的声明方式,这是有些人为了美观等原因才这样写的: #-*- cod...
919 0