我们请来了2017 NIPS大会发文数全球前3的华人教授,讲解网络数据的表征学习(视频+PPT)

简介:

2017 NIPS大会可以算得上全球声量最大、出席人数最多的AI学术会议了。大会刚刚落下帷幕,不少媒体和社区都总结了本次会议相关数据,比如,大会发文数:

216e6bf98ac1d16df085fbab2ced0bc9de608e42

图:最有声望、出席人数最多的AI学术会议-NIPS 今年大会发表文章最多的作者排名。

来源:

https://unsupervisedmethods.com/nips-accepted-papers-stats-26f124843aa0

在发文量前三名中,唯一出现的华人是来自佐治亚理工大学计算科学与工程系终身副教授,机器学习中心副主任宋乐教授。

宋乐教授(Le Song)现任蚂蚁金服人工智能部首席工程师(Principle Engineer),他的主要研究方向是机器学习的大规模算法和高效系统,特别是使用核方法和深度学习方法的图模型的嵌入方法,以及静态和动态网络分析,人工智能、社会科学、计算生物学等跨学科领域里的大规模复杂问题的建模和求解。

前段时间,大数据文摘有幸邀请到宋乐教授为我们的读者分享他的研究成果:用Structure2Vec提取特征,解决网络数据的表征学习问题。

cd6713b1132e647d93c58a6ad18accf5980e7bdc

本次分享,宋乐教授介绍了一个强大的异构网络深度学习和推理平台:Stracture2Vec。有了它,我们可以更加容易和高效地解决复杂的网络表征学习问题。

9cf0218eb9ddaa221c506213238a1c3a8638cee9

宋乐教授从Structure2Vec平台后面的模型、算法、设计思想和大规模分布式实现的一些细节入手,介绍了它在推荐、营销、知识图谱推理、风控、安全等问题上的应用和效果。

af5ad44826d37b90bbf4b1d2fb783976d7a4d6bc

目前没有时间观看的同学可以先收藏课程,下拉看文摘菌总结的课程介绍和PPT▼▼▼

课程介绍

现实社会中的各种行为把整个世界编织成一个庞大而复杂的网络。人们日常的联系和交流行为构成了社交网络,互联网中的网页链接关系构成了万维网。

efc3a40ffbf411f554ffde39d356c3380313aec0

支付平台中的交易行为构成了交易网络和资金网络,人们日常的出行轨迹构成了交通网络,微观世界中的分子交互行为以及电子电路的传导行为同样也构成了美妙而复杂的网络关系。

fbc19619086e442f17473681f14e00dbddcddc82

如何从这些复杂的网络数据中提取有价值的特征?

这些网络形成的背后是否存在什么潜在的规律?

不同类型的网络之间又是如何互相影响和传导的呢?

要回答这些问题,一个强大的网络深度学习和推理平台尤为重要。

以前的深度学习模型如CNN和RNN,可以解决图像及文本上的表征学习,但是对网络数据却无能为力。

本次分享将介绍一个强大的异构网络深度学习和推理平台:Structure2Vec。有了它,我们可以更加容易和高效地解决上述复杂的网络表征学习问题。

Structure2Vec提供了一种能够同时整合节点特征,边特征,异构网络结构以及网络动态演化特征的深度学习和推理的嵌入技术,它不仅可以对网络中的节点和边进行推理,还可以对节点,边,甚至子图进行向量化(embedding)。

Structure2Vec产出的特征向量可以与其他机器学习方法进行再融合,比如分类方法、回归方法、生成模型及强化学习方法。

f53d39385a82c8f49ef7dfa52514e41a44c1c659


以下为本次分享PPT精华

526d540ce582392e196d14b3df66e846d0305661


原文发布时间为:2017-12-23

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
29天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
180 0
|
2月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
|
3月前
|
数据采集 存储 算法
MyEMS 开源能源管理系统:基于 4G 无线传感网络的能源数据闭环管理方案
MyEMS 是开源能源管理领域的标杆解决方案,采用 Python、Django 与 React 技术栈,具备模块化架构与跨平台兼容性。系统涵盖能源数据治理、设备管理、工单流转与智能控制四大核心功能,结合高精度 4G 无线计量仪表,实现高效数据采集与边缘计算。方案部署灵活、安全性高,助力企业实现能源数字化与碳减排目标。
83 0
|
4月前
|
Python
LBA-ECO CD-32 通量塔网络数据汇编,巴西亚马逊:1999-2006,V2
该数据集汇集了1999年至2006年间巴西亚马逊地区九座观测塔的碳和能量通量、气象、辐射等多类数据,涵盖小时至月度时间步长。作为第二版汇编,数据经过协调与质量控制,扩展了第一版内容,并新增生态系统呼吸等相关计算数据,支持综合研究与模型合成。数据以36个制表符分隔文本文件形式提供,配套PDF说明文件,适用于生态与气候研究。引用来源为Restrepo-Coupe等人(2021)。
55 1
|
18天前
|
JavaScript Java 大数据
基于python的网络课程在线学习交流系统
本研究聚焦网络课程在线学习交流系统,从社会、技术、教育三方面探讨其发展背景与意义。系统借助Java、Spring Boot、MySQL、Vue等技术实现,融合云计算、大数据与人工智能,推动教育公平与教学模式创新,具有重要理论价值与实践意义。
|
1月前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
|
3月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
93 4
|
4月前
|
开发者
鸿蒙仓颉语言开发教程:网络请求和数据解析
本文介绍了在仓颉开发语言中实现网络请求的方法,以购物应用的分类列表为例,详细讲解了从权限配置、发起请求到数据解析的全过程。通过示例代码,帮助开发者快速掌握如何在网络请求中处理数据并展示到页面上,减少开发中的摸索成本。
鸿蒙仓颉语言开发教程:网络请求和数据解析
|
6月前
|
存储 数据库 Python
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
133 14