泛函编程(7)-数据结构-List-折叠算法

简介:

  折叠算法是List的典型算法。通过折叠算法可以实现众多函数组合(function composition)。所以折叠算法也是泛函编程里的基本组件(function combinator)。了解折叠算法的原理对了解泛函组合有着至关紧要的帮助。折叠算法又可分右折叠和左折叠。我们先从右折叠(foldRight)开始:

 foldRightfoldRight

从以上两图示可以得出对List(a,b,c)的右折叠算法:op(a,op(b,op(c,z))) 可以看出括号是从右开始的。计算方式如图二:op(a,sub), sub是重复子树,可以肯定要用递归算法。这里z代表了一个起始值。我们现在可以推算出foldRight的函数款式(function signature)了:


1       def foldRight[A,B](l: List[A], z: B)(op: (A,B) => B): B = l match {
2           case Nil => z
3           case Cons(h,t) => op(h,foldRight(t,z)(f))
4       }

注意foldRight不是一个尾递归算法(tail recursive)。我们试着对一个List(1,2,3)进行操作,先来个加法: 


1 foldRight(List(1,2,3),0)((x,y) => x + y)          //> res13: Int = 6
2 foldRight(List(1,2,3),0){_ + _}                   //> res14: Int = 6

我们可以用”等量替换“方法简约:


1  // (List(x1,x2,x3...x{n-1}, xn) foldRight acc) op => x1 op (...(xn op acc)...)
2  // foldRight(Cons(1,Cons(2,Cons(3,Nil))), 0) {_ + _}
3  // 1 + foldRight(Cons(2,Cons(3,Nil)), 0) {_ + _}
4  // 1 + (2 + foldRight(Cons(3,Nil), 0) {_ + _})
5  // 1 + (2 + (3 + foldRight(Nil, 0) {_ + _}))
6  // 1 + (2 + (3 + 0)) = 6

1 foldRight(List(1,2,3),1){_ * _}                   //> res16: Int = 6
2 foldRight(List(1,2,3),Nil:List[Int]) { (a,b) => Cons(a+10,b) }
                                                    //> res17: ch3.list.List[Int] = Cons(11,Cons(12,Cons(13,Nil)))

注意以上的起始值1和Nil:List[Int]。z的类型可以不是A,所以op的结果也有可能不是A类型,但在以上的加法和乘法的例子里z都是Int类型的。但在List重构例子里z是List[Int]类型,所以op的结果也是List[Int]类型的,这点要特别注意。

再来看看左折叠算法:

foldLeftfoldLeft

从以上图示分析,左折叠算法就是所有List元素对z的操作op。从图二可见,op对z,a操作后op的结果再作为z与b再进行op操作,如此循环。看来又是一个递归算法,而z就是一个用op累积的值了:op(op(op(z,a),b),c)。左折叠算法的括号是从左边开始的。来看看foldLeft的实现:


1       def foldLeft[A,B](l: List[A], acc: B)(op: (B,A) => B): B = l match {
2           case Nil => acc
3           case Cons(h,t) => foldLeft(t,op(acc,h))(op)
4       }

注意z (zero) 变成了 acc (accumulator),op: (B,A) = B, 和foldRight的op函数入参顺序是颠倒的。foldLeft是个尾递归方法。


1 foldLeft(List(1,2,3),0)((b,a) => a + b)           //> res18: Int = 6
2 foldLeft(List(1,2,3),0){_ + _}                    //> res19: Int = 6
3 foldLeft(List(1,2,3),1)((b,a) => a * b)           //> res20: Int = 6
4 foldLeft(List(1,2,3),1){_ * _}                    //> res21: Int = 6
5 foldLeft(List(1,2,3),Nil:List[Int]) { (b,a) => Cons(a+10,b) }
6                                                   //> res22: ch3.list.List[Int] = Cons(13,Cons(12,Cons(11,Nil)))

以上加法和乘法的累积值acc都是A类型,但注意List重构的acc是List[Int]类型的,这个时候op入参的位置就很重要了。再注意一下,foldLeft重构的List的元素排列是反向的Cons(13,Cons(12,Cons(11,Nil))。我们还是可以用“等量替换”方法进行简约:


1 // (List(x1,x2,x3...x{n-1}, xn) foldLeft acc) op => (...(acc op x1) op x2)...) op x{n-1}) op xn
2  // foldLeft(Cons(1,Cons(2,Cons(3,Nil))), 0) {_ + _}
3  // foldLeft(Cons(2,Cons(3,Nil)), (0 + 1)) {_ + _}
4  // foldLeft(Cons(3,Nil), ((0 + 1) + 2)) {_ + _}
5  // foldLeft(Nil, (((0 + 1) + 2) + 3)) {_ + _}
6  // (((0 + 1) + 2) + 3) + 0 = 6

除foldRight,foldLeft之外,折叠算法还包括了:reduceRight,reduceLeft,scanRight,scanLeft。

 reduceLeftreduceRight

reduceLeft是以第一个,reduceRight是以最后一个List元素作为起始值的折叠算法,没有单独的起始值:


1       def reduceLeft[A](l: List[A])(op: (A,A) => A): A = l match {
2           case Nil => sys.error("Empty list!")
3           case Cons(h,t) => foldLeft(t,h)(op)
4       }
5       def reduceRight[A](l: List[A])(op: (A,A) => A): A = l match {
6           case Cons(h,Nil) => h
7           case Cons(h,t) => op(h,reduceRight(t)(op))
8       }

1  reduceLeft(List(1,2,3)) {_ + _}                  //> res23: Int = 6
2  reduceRight(List(1,2,3)) {_ + _}                 //> res24: Int = 6

scanLeft, scanRight 分别把每次op的结果插入新产生的List作为返回结果。

 先实现scanLeft:


1        def scanLeft[A](l: List[A],z: A)(op: (A,A) => A): List[A] = l match {
2            case Nil => Cons(z,Nil)
3            case Cons(h,t) => Cons(z,scanLeft(t,op(z,h))(op))
4        }

1 scanLeft(List(1,2,3),0) {_ + _}                   //> res25: ch3.list.List[Int] = Cons(0,Cons(1,Cons(3,Cons(6,Nil))))

试试简约:

 1  // (List(x1,x2,x3...x{n-1}, xn) scanLeft acc) op => (...(acc op x1) op x2)...) op x{n-1}) op xn
 2  // scanLeft(Cons(1,Cons(2,Cons(3,Nil))), 0) {_ + _}
 3  // Cons(0,scanLeft(Cons(1,Cons(2,Cons(3,Nil))), 0) {_ + _})
 4  // Cons(0,Cons((0 + 1), scanLeft(Cons(2,Cons(3,Nil)), (0 + 1)) {_ + _}))
 5  // ==> Cons(0,Cons(1,scanLeft(Cons(2,Cons(3,Nil)), 1) {_ + _}))
 6  // Cons(0,Cons(1,Cons(2 + 1,scanLeft(Cons(3,Nil), 1 + 2) {_ + _})))
 7  // ==> Cons(0,Cons(1,Cons(3,scanLeft(Cons(3,Nil), 3) {_ + _})))
 8  // Cons(0,Cons(1,Cons(3,Cons(3 + 3,foldLeft(Nil, 3 + 3) {_ + _}))))
 9  // ==> Cons(0,Cons(1,Cons(3,Cons(6,foldLeft(Nil, 6) {_ + _}))))
10  // Cons(0,Cons(1,Cons(3,Cons(6,Nil))))

再实现scanRight:


 1     def reverse[A](l: List[A]): List[A] = foldLeft(l,Nil:List[A]){(acc,h) => Cons(h,acc)}
 2        
 3        def scanRight[A](l: List[A],z: A)(op: (A,A) => A): List[A] =  {
 4                 var scanned = List(z)
 5                 var acc = z
 6                 var ll = reverse(l)
 7                 var x = z
 8                 while (
 9                 ll match {
10                              case Nil => false
11                              case Cons(h,t) => { x = h; ll = t; true }
12                 }
13             ) {
14                         acc = op(acc,x)
15                            scanned = Cons(acc,scanned)
16                 }
17          scanned
18       }

实在没能想出用递归算法实现scanRight的方法,只能用while loop来解决了。注意虽然使用了临时变量,但这些变量都是本地封闭的,所以scanRight还是纯函数。scanRight元素遍历(traverse)顺序是反向的,所以用reverse函数把List(1,2,3)先变成List(3,2,1)。


1 scanRight(List(1,2,3),0) {_ + _}                  //> res26: ch3.list.List[Int] = Cons(6,Cons(5,Cons(3,Cons(0,Nil))))

注意scanRight和scanLeft的结果不同。这是因为算法不同:元素遍历(traverse)顺序不同。

下面开始示范一下折叠算法作为基本组件(combinator)来实现一些函数功能:

上次实现了函数++,即append。我们同样可以用foldLeft和foldRight来实现:


1       def appendByFoldRight[A](l1: List[A], l2: List[A]): List[A] = foldRight(l1,l2){(h,acc) => Cons(h,acc)}
2       def appendByFoldLeft[A](l1: List[A], l2: List[A]): List[A] = foldLeft(reverse(l1),l2){(acc,h) => Cons(h,acc)}

1 appendByFoldLeft(List(1,2),List(3,4))             //> res27: ch3.list.List[Int] = Cons(1,Cons(2,Cons(3,Cons(4,Nil))))
2 appendByFoldRight(List(1,2),List(3,4))            //> res28: ch3.list.List[Int] = Cons(1,Cons(2,Cons(3,Cons(4,Nil))))

由于append的功能是将两个List拼接起来,必须保证最终结果List元素的顺序。所以在appendByFoldLeft里使用了reverse。再注意foldLeft和foldRight在op参数位置是相反的。

之前递归算法实现的函数有些是可以用折叠算法实现的:


1       def map_1[A,B](l: List[A])(f: A => B): List[B] = foldRight(l,Nil: List[B]){(h,acc) => Cons(f(h),acc)}

1       def filter_1[A](l: List[A])(f: A => Boolean): List[A] = foldRight(l,Nil: List[A]){(h,acc) => if (f(h)) Cons(h,acc) else acc }
2       def flatMap_1[A,B](l: List[A])(f: A => List[B]): List[B] = foldRight(l,Nil: List[B]){(h,acc) => appendByFoldRight(f(h),acc)}

1       def lengthByFoldRight[A](l: List[A]): Int = foldRight(l,0){(_,acc) => acc + 1 }
2       def lengthByFoldLeft[A](l: List[A]): Int = foldLeft(l,0){(acc,_) => acc + 1 }

还有些比较间接的:

1     def conCat[A](ll: List[List[A]]): List[A] = foldRight(ll,Nil: List[A]){appendByFoldRight}


这个函数可以用来实现flatMap:


1      def flatMap_1[A,B](l: List[A])(f: A => List[B]): List[B] = conCat(map(l)(f))

如果理解以上函数实现方式有困难时可以先从类型匹配上下手,或者试着用“等量替换”方法简约跟踪一下。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
146 4
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
105 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
155 59
|
16天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
50 20
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
118 23
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
70 1
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
67 2
|
3月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
56 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
2月前
|
存储 消息中间件 NoSQL
Redis数据结构:List类型全面解析
Redis数据结构——List类型全面解析:存储多个有序的字符串,列表中每个字符串成为元素 Eelement,最多可以存储 2^32-1 个元素。可对列表两端插入(push)和弹出(pop)、获取指定范围的元素列表等,常见命令。 底层数据结构:3.2版本之前,底层采用**压缩链表ZipList**和**双向链表LinkedList**;3.2版本之后,底层数据结构为**快速链表QuickList** 列表是一种比较灵活的数据结构,可以充当栈、队列、阻塞队列,在实际开发中有很多应用场景。