函数可微的一个充分条件

简介: 设函数 $f:\bbR^n\to \bbR$ 在 $\bbR^n\bs \sed{0}$ 可微, 在 $0$ 连续, 且 $$\bex\lim_{\bbx\to0}\frac{\p f(\bbx)}{\p x_i}=0,\ i=1,2,\cdots,n.

设函数 $f:\bbR^n\to \bbR$ 在 $\bbR^n\bs \sed{0}$ 可微, 在 $0$ 连续, 且 $$\bex\lim_{\bbx\to0}\frac{\p f(\bbx)}{\p x_i}=0,\ i=1,2,\cdots,n. \eex$$ 证明 $f$ 在 $0$ 可微. 证明:  由 $$\beex \bea |f(\bbx)-f(0)| &\leq |f(x_1,x_2,\cdots,x_n)-f(0,x_2,\cdots,x_n)|\\ &\quad +|f(0,x_2,\cdots,x_n)-f(0,0,\cdots,x_n)|\\ &\quad+\cdots +|f(0,0,\cdots,x_n)-f(0,0,\cdots,0)|\\ &=\sum_{i=1}^n\sev{\frac{\p f}{\p x_i}(\xi_i)}\cdot |x_i| \eea \eeex$$ 知 $$\bex \lim_{\bbx\to 0}\frac{|f(\bbx)-f(0)|}{|\bbx|}=0. \eex$$ 故有结论.  

目录
相关文章
【概率论基础】条件概率 | 乘法法则 | 事件的独立性
【概率论基础】条件概率 | 乘法法则 | 事件的独立性
118 0
【概率论基础】条件概率 | 乘法法则 | 事件的独立性
|
6月前
高等数学II-知识点(3)——广义积分、定积分几何应用、定积分求曲线弧长、常微分方程、可分离变量的微分方程、一阶微分方程-齐次方程、一阶线性微分方程
高等数学II-知识点(3)——广义积分、定积分几何应用、定积分求曲线弧长、常微分方程、可分离变量的微分方程、一阶微分方程-齐次方程、一阶线性微分方程
69 0
|
机器学习/深度学习 算法 数据处理
无约束最优化(五) 最小二乘法问题的解法
无约束最优化(五) 最小二乘法问题的解法
189 0
|
存储 算法
PDE优化|逆问题中偏微分方程约束优化的惩罚方法(Matlab代码实现)
PDE优化|逆问题中偏微分方程约束优化的惩罚方法(Matlab代码实现)
225 0
运用函数求方程式的解
运用函数求方程式的解
51 0
凸优化理论基础3——凸集和凸锥重要例子
凸优化理论基础3——凸集和凸锥重要例子
954 0
凸优化理论基础3——凸集和凸锥重要例子
|
机器学习/深度学习
【计算理论】计算复杂性 ( 非确定性图灵机的时间复杂度 | 非确定性图灵机 与 确定性图灵机 的时间复杂度 之间的关系 )
【计算理论】计算复杂性 ( 非确定性图灵机的时间复杂度 | 非确定性图灵机 与 确定性图灵机 的时间复杂度 之间的关系 )
203 0
【计算理论】计算复杂性 ( 非确定性图灵机的时间复杂度 | 非确定性图灵机 与 确定性图灵机 的时间复杂度 之间的关系 )
|
机器学习/深度学习
【组合数学】组合数学简介 ( 组合思想 3 : 上下界逼近 | 上下界逼近示例 Remsey 数 )
【组合数学】组合数学简介 ( 组合思想 3 : 上下界逼近 | 上下界逼近示例 Remsey 数 )
255 0
【组合数学】组合数学简介 ( 组合思想 3 : 上下界逼近 | 上下界逼近示例 Remsey 数 )
|
机器学习/深度学习 算法
【计算理论】计算复杂性 ( 算法复杂度标记 | 渐进上界 | 大 O 记号 | 常用的渐进上界 )
【计算理论】计算复杂性 ( 算法复杂度标记 | 渐进上界 | 大 O 记号 | 常用的渐进上界 )
601 0
|
算法 Serverless
【计算理论】图灵机 ( 图灵机引入 | 公理化 | 希尔伯特纲领 | 哥德尔不完备定理 | 原始递归函数 )
【计算理论】图灵机 ( 图灵机引入 | 公理化 | 希尔伯特纲领 | 哥德尔不完备定理 | 原始递归函数 )
283 0