多项式互素与空间直和

简介: 设 $f(x),g(x)$ 为数域 $\bbF$ 上的多项式, 且有 $(f(x),g(x))=1$, $A$ 是 $\bbF$ 上的一方阵. 再设 $f(A)g(A)x=0$, $f(A)x=0$, $g(A)x=0$ 的解空间分别为 $W$, $V_1$ 和 $V_2$.

设 $f(x),g(x)$ 为数域 $\bbF$ 上的多项式, 且有 $(f(x),g(x))=1$, $A$ 是 $\bbF$ 上的一方阵. 再设 $f(A)g(A)x=0$, $f(A)x=0$, $g(A)x=0$ 的解空间分别为 $W$, $V_1$ 和 $V_2$. 证明: $$\bex W=V_1\oplus V_2. \eex$$

 

证明:  由 $(f(x),g(x))=1$ 知存在多项式 $u(x),v(x)$ 使得 $$\bex u(x)f(x)+v(x)g(x)=1. \eex$$ 于是对 $\forall\ \alpha\in W$, $$\bex \alpha=v(A)g(A)\alpha+u(A)f(A)\alpha. \eex$$ 由 $$\bex f(A)[v(A)g(A)\alpha]=0,\quad g(A)[u(A)f(A)\alpha]=0 \eex$$ 知 $$\bex v(A)g(A)\alpha\in V_1,\quad u(A)f(A)\alpha\in V_2. \eex$$ 于是 $W=V_1+V_2$.  又由 $$\bex \alpha\in V_1\cap V_2\ra f(A)\alpha=g(A)\alpha=0\ra \alpha=u(A)f(A)\alpha+v(A)g(A)\alpha=0 \eex$$ 知 $W=V_1\oplus V_2$.  

目录
相关文章
|
7月前
|
人工智能
C 矩阵交换行
【2月更文挑战第7天】C 矩阵交换行。
44 1
|
7月前
|
算法 测试技术 C++
【差分数组】【图论】【分类讨论】【整除以2】3017按距离统计房屋对数目
【差分数组】【图论】【分类讨论】【整除以2】3017按距离统计房屋对数目
|
7月前
|
机器学习/深度学习 人工智能 算法
【代数学作业1-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
【代数学作业1-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
132 0
|
机器学习/深度学习 决策智能
矩阵分析 (一) 线性空间和线性变换
矩阵分析 (一) 线性空间和线性变换
215 0
|
7月前
|
算法 测试技术 C#
【差分数组】【图论】【分类讨论】【整除以2】100213按距离统计房屋对数目
【差分数组】【图论】【分类讨论】【整除以2】100213按距离统计房屋对数目
【差分数组】【图论】【分类讨论】【整除以2】100213按距离统计房屋对数目
|
7月前
|
算法 定位技术
插值、平稳假设、本征假设、变异函数、基台、块金、克里格、线性无偏最优…地学计算概念及公式推导
插值、平稳假设、本征假设、变异函数、基台、块金、克里格、线性无偏最优…地学计算概念及公式推导
167 2
你理解了梯度下降在二维直角坐标系的神奇现象吗?
最近在学习梯度下降的知识,可是怎么也跳不出对公式的理解。 这是怎么回事呢? 我们先来看看这个公式:
55 0
你理解了梯度下降在二维直角坐标系的神奇现象吗?
|
机器学习/深度学习 传感器 算法
基于非相干信号子空间(ISM)的宽带源DOA估计方法附matlab代码
基于非相干信号子空间(ISM)的宽带源DOA估计方法附matlab代码
|
机器学习/深度学习 传感器 算法
基于有限差分法和追赶法解对角矩阵解二维热传导问题附matlab代码
基于有限差分法和追赶法解对角矩阵解二维热传导问题附matlab代码