[物理学与PDEs]第1章习题6 无限长载流直线的磁场

简介: 试计算电流强度为 $I$ 的无限长的直导线所产生的磁场的磁感强度.   解答: 设 $P$ 到直线的距离为 $r$, 垂足为 $P_0$, 则 ${\bf B}(P)$ 的方向为 ${\bf I}\times {\bf r}_{P_0P}$, 大小为 $$\beex \bea {\bf B}(P...

试计算电流强度为 $I$ 的无限长的直导线所产生的磁场的磁感强度.

 

解答: 设 $P$ 到直线的距离为 $r$, 垂足为 $P_0$, 则 ${\bf B}(P)$ 的方向为 ${\bf I}\times {\bf r}_{P_0P}$, 大小为 $$\beex \bea {\bf B}(P)&=\cfrac{\mu_0}{4\pi}\int_{-\infty}^{+\infty} \cfrac{|I\rd{\bf x}\times{\bf r}_{xP}|}{r_{xP}^3}\\ &=\cfrac{\mu_0}{4\pi} \int_{-\infty}^{+\infty} \cfrac{I}{x^2+r^2} \cfrac{r}{\sqrt{x^2+r^2}}\rd x\\ &=\cfrac{2\mu_0Ir}{4\pi}\int_0^\infty \cfrac{1}{(x^2+r^2)^\frac{3}{2}}\rd x\\ &=\cfrac{2\mu_0Ir}{4\pi}\cdot \cfrac{1}{r^2}\\ &=\cfrac{\mu_0I}{2\pi r}. \eea \eeex$$ 另外, 你也可以直接由 Amp\'ere 定理证明: $$\bex B\cdot 2\pi r=\mu_0I\ra B=\cfrac{\mu_0I}{2\pi r}. \eex$$

目录
相关文章
|
机器学习/深度学习
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...
608 0
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场
设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$   证明: 不妨设 ${\bf H}=(0,0,H_3)^T$, 则 $$\bex \Div{\bf H}=0\ra \cfrac{\p H_3}{\p x_3}=0.
578 0
[物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿流线的一个守恒量
设定常 (即 $\cfrac{\p {\bf u}}{\p t}={\bf 0}$)、不可压缩 (设 $\rho=1$) 的理想流体所受的体积力仅为重力. 又设磁场满足条件: $({\bf H}\cdot\n){\bf H}={\bf 0}$.
788 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
751 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
645 0
|
资源调度 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
795 0
|
资源调度 关系型数据库 RDS
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.2 向量场过任一随流体运动的曲面的通量对时间的微式及其应用
1.  $$\bex \cfrac{\rd}{\rd t}\int_S {\bf a}\cdot{\bf n}\rd S =\int_S \sez{ \cfrac{\p {\bf a}}{\p t} +(\Div{\bf a}){\bf u}-\rot({\bf u}\times{\bf a}) }\cdot {\bf n}\rd S.
747 0
|
资源调度
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfrac{{\bf H}}{\rho}$, $\rd {\bf r}$ 满足同一线性齐次 ODE 组:...
759 0
|
资源调度
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\b...
840 0