[再寄小读者之数学篇](2014-05-20 一个分部积分)

简介: $$\beex \bea \int \lap f|f|^{q-2}f\rd x &=-\int \n f\cdot \sez{(q-2)|f|^{q-3}\cfrac{f}{|f|}\n f\cdot f +|f|^{q-2}\n f}\rd x\\ &=-\int (q-2)|f|^{q-4}|f...

$$\beex \bea \int \lap f|f|^{q-2}f\rd x &=-\int \n f\cdot \sez{(q-2)|f|^{q-3}\cfrac{f}{|f|}\n f\cdot f +|f|^{q-2}\n f}\rd x\\ &=-\int (q-2)|f|^{q-4}|f|^2|\n f|^2 +|f|^{q-2}|\n f|\rd x\\ &=-(q-1)\int |f|^{q-2}|\n f|^2\rd x\\ &=-(q-1)\int |f|^{q-2}|\n |f||^2\rd x\quad\sex{\n|f|=\cfrac{f}{|f|}\n f}\\ &=-(q-1)\int | |f|^{\frac{q}{2}-1}\n |f| |^2\rd x\\ &=-\cfrac{4(q-1)}{q^2} \int| \n |f|^{\frac{q}{2}} |^2\rd x. \eea \eeex$$ 

目录
相关文章
|
7月前
|
编解码 算法 5G
信息论与编码期末复习——概念论述简答题(一)
信息论与编码期末复习——概念论述简答题(一)
188 0
信息论与编码期末复习——概念论述简答题(一)
|
7月前
通信原理期末复习——计算大题(一)
通信原理期末复习——计算大题(一)
62 0
通信原理期末复习——计算大题(一)
|
决策智能
运筹优化学习15:求解线性规划的单纯形法【手把手计算,够你应付考试了,看不懂算我输】(上)
运筹优化学习15:求解线性规划的单纯形法【手把手计算,够你应付考试了,看不懂算我输】
运筹优化学习15:求解线性规划的单纯形法【手把手计算,够你应付考试了,看不懂算我输】(上)
|
决策智能
运筹优化学习15:求解线性规划的单纯形法【手把手计算,够你应付考试了,看不懂算我输】(下)
运筹优化学习15:求解线性规划的单纯形法【手把手计算,够你应付考试了,看不懂算我输】
纯粹的K12精髓 - 名师指导整理《20以内加法口诀表》
纯粹的K12精髓 - 名师指导整理《20以内加法口诀表》 太阳火神的美丽人生 (http://blog.csdn.net/opengl_es) 本文遵循“署名-非商业用途-保持一致”创作公用协议 转载请保留此句:太阳火神的美丽人生 -  本博客专注于 敏捷开发及移动和物联设备研究:iOS、Android、Html5、Arduino、pcDuino,否则,出自本博客的文章拒绝转载或再转载,谢谢合作。
1304 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-24 积分不等式)
(AMM. Problems and Solutions. 2015. 01) Let $f$ be a twice continuously differentiable function from $[0,1]$ into $\bbR$.
593 0
|
Web App开发
[家里蹲大学数学杂志]第394期分组求积分因子法
在第 2.3 节中, 我们已经知道, 对 $$\bee\label{ode} M(x,y)\rd x+N(x,y)\rd y=0 \eee$$而言,   1. 若 $M_y=N_x$, 则 \eqref{ode} 为恰当 ode, 而可通过求解 pde 组 $$\bex u_x=M,\quad u_y=N \eex$$ 求出 $u$, 而 \eqref{ode} 的通解为 $u=C$.
911 0
[再寄小读者之数学篇](2014-06-19 利用分部积分求函数值)
设 $f\in C^2[0,\pi]$, 且 $f(\pi)=2$, $\dps{\int_0^\pi [f(x)+f''(x)]\sin x\rd x=5}$. 求 $f(0)$.     解答: 由 $$\beex \bea 5&=\int_0^\pi [f(x)+f''(x)]\sin x...
544 0
[再寄小读者之数学篇](2014-06-20 求积分)
设 $n\in\bbN^+$, 计算积分 $\dps{\int_0^{\pi/2} \cfrac{\sin nx}{\sin x}\rd x}.$     解答: (1) 由 $$\beex \bea 2\sin x\cdot \cfrac{1}{2}&=\sin x,\\ 2\sin x\cd...
587 0