[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.2

简介: Let $X$ be nay basis of $\scrH$ and let $Y$ be the basis biorthogonal to it. Using matrix multiplication, $X$ gives a linear transformation from $\bbC^n$ to $\scrH$.

Let $X$ be nay basis of $\scrH$ and let $Y$ be the basis biorthogonal to it. Using matrix multiplication, $X$ gives a linear transformation from $\bbC^n$ to $\scrH$. The inverse of this is given by $Y^*$. In the special case when $X$ is orthonormal (so that $Y=X$), this transformation is inner-product preserving if the standard inner product is used on $\bbC^n$. \eex$$

 

解答: $$\beex \bea \sex{\ba{c} a_1\\ \vdots\\ a_n \ea}\in\bbC^n&\ra X\sex{\ba{c} a_1\\ \vdots\\ a_n \ea}\in \scrH,\\ X\sex{\ba{c} a_1\\ \vdots\\ a_n \ea}=\sex{\ba{c} b_1\\ \vdots\\ b_k \ea}&\ra \sex{\ba{c} a_1\\ \vdots\\ a_n \ea}=Y^*\sex{\ba{c} b_1\\ \vdots\\ b_k \ea},\\ \sef{X\sex{\ba{c} a_1\\ \vdots\\ a_n \ea},Y\sex{\ba{c} b_1\\ \vdots\\ b_n \ea}}&=\sex{\bar a_1,\cdots,\bar a_n}X^*Y\sex{\ba{c} b_1\\ \vdots\\ b_n \ea}=\sum_{i=1}^n \bar a_ib_i. \eea \eeex$$

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$   Solution. By Exercise I.
557 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
651 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7
Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot...
607 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
453 0
|
应用服务中间件 AHAS Perl
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6
Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.
806 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3
Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $...
723 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
627 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
703 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$co...
663 0
|
Perl
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1
Let $A=A_1\oplus A_2$. Show that   (1). $W(A)$ is the convex hull of $W(A_1)$ and $W(A_2)$; i.e., the smallest convex set containing $W(A_1)\cup W(A_2)$.
500 0